Publications by authors named "Christopher B Saltonstall"

Radio frequency (RF) microelectromechanical systems (MEMS) based on AlScN are replacing AlN-based devices because of their higher achievable bandwidths, suitable for the fifth-generation (5G) mobile network. However, overheating of AlScN film bulk acoustic resonators (FBARs) used in RF MEMS filters limits power handling and thus the phone's ability to operate in an increasingly congested RF environment while maintaining its maximum data transmission rate. In this work, the ramifications of tailoring of the piezoelectric response and microstructure of AlScN films on the thermal transport have been studied.

View Article and Find Full Text PDF

Spectral linewidths are used to assess a variety of physical properties, even as spectral overlap makes quantitative extraction difficult owing to uncertainty. Uncertainty, in turn, can be minimized with the choice of appropriate experimental conditions used in spectral collection. In response, we assess the experimental factors dictating uncertainty in the quantification of linewidth from a Raman experiment highlighting the comparative influence of (1) spectral resolution, (2) signal to noise, and (3) relative peak intensity (RPI) of the overlapping peaks.

View Article and Find Full Text PDF

Despite a larger sensitivity to temperature as compared to other microscale thermometry methods, Raman based measurements typically have greater uncertainty. In response, a new implementation of Raman thermometry is presented having lower uncertainty while also reducing the time and hardware needed to perform the experiment. Using a modulated laser to excite the Raman response, the intensity of only a portion of the total Raman signal is leveraged as the thermometer by using a single element detector monitored with a lock-in amplifier.

View Article and Find Full Text PDF

Self-assembled monolayers (SAMs) have recently garnered much interest due to their unique electrical, chemical, and thermal properties. Several studies have focused on thermal transport across solid-SAM junctions, demonstrating that interface conductance is largely insensitive to changes in SAM length. In the present study, we have investigated the vibrational spectra of alkanedithiol-based SAMs as a function of the number of methylene groups forming the molecular backbone via Hartree-Fock methods.

View Article and Find Full Text PDF