Publications by authors named "Christopher B Geyer"

The adult mammalian testis is filled with seminiferous tubules, which contain somatic Sertoli cells along with germ cells undergoing all phases of spermatogenesis. During spermatogenesis in postnatal mice, male germ cells undergo at least 17 different nomenclature changes as they proceed through mitosis as spermatogonia (=8), meiosis as spermatocytes (=6), and spermiogenesis as spermatids (=3) [1-6]. Adding to this complexity, combinations of germ cells at each of these stages of development are clumped together along the length of the seminiferous tubules.

View Article and Find Full Text PDF

Sperm gain fertilization competence in the female reproductive tract through a series of biochemical changes and a requisite switch from linear progressive to hyperactive motility. Despite being essential for fertilization, regulation of sperm energy transduction is poorly understood. This knowledge gap confounds interpretation of interspecies variation and limits progress in optimizing sperm selection for assisted reproduction.

View Article and Find Full Text PDF

The foundation of spermatogenesis and lifelong fertility is provided by spermatogonial stem cells (SSCs). SSCs divide asymmetrically to either replenish their numbers (self-renewal) or produce undifferentiated progenitors that proliferate before committing to differentiation. However, regulatory mechanisms governing SSC maintenance are poorly understood.

View Article and Find Full Text PDF

Retinoic acid (RA) is the proposed mammalian 'meiosis inducing substance'. However, evidence for this role comes from studies in the fetal ovary, where germ cell differentiation and meiotic initiation are temporally inseparable. In the postnatal testis, these events are separated by more than 1 week.

View Article and Find Full Text PDF

The delivery, to newborn and juvenile mice, of drugs and other compounds that manipulate the physiology or cellular/molecular state -e.g., by activating or inhibiting signaling pathways) is a powerful, yet underutilized approach to studying spermatogenesis.

View Article and Find Full Text PDF

The foundation of mammalian spermatogenesis is provided by undifferentiated spermatogonia, which comprise of spermatogonial stem cells (SSCs) and transit-amplifying progenitors that differentiate in response to retinoic acid (RA) and are committed to enter meiosis. Our laboratory recently reported that the foundational populations of SSCs, undifferentiated progenitors, and differentiating spermatogonia are formed in the neonatal testis in part based on their differential responsiveness to RA. Here, we expand on those findings to define the extent to which RA responsiveness during steady-state spermatogenesis in the adult testis regulates the spermatogonial fate.

View Article and Find Full Text PDF

The formation of fertilisation-competent sperm requires spermatid morphogenesis (spermiogenesis), a poorly understood program that involves complex coordinated restructuring and specialised cytoskeletal structures. A major class of cytoskeletal regulators are the actin-related proteins (ARPs), which include conventional actin variants, and related proteins that play essential roles in complexes regulating actin dynamics, intracellular transport, and chromatin remodeling. Multiple testis-specific ARPs are well conserved among mammals, but their functional roles are unknown.

View Article and Find Full Text PDF

In mammalian testes, premeiotic spermatogonia respond to retinoic acid by completing an essential lengthy differentiation program before initiating meiosis. The molecular and cellular changes directing these developmental processes remain largely undefined. This wide gap in knowledge is due to two unresolved technical challenges: (1) lack of robust and reliable in vitro models to study differentiation and meiotic initiation; and (2) lack of methods to isolate large and pure populations of male germ cells at each stage of differentiation and at meiotic initiation.

View Article and Find Full Text PDF

Control over gene expression is exerted, in multiple stages of spermatogenesis, at the post-transcriptional level by RNA binding proteins (RBPs). We identify here an essential role in mammalian spermatogenesis and male fertility for 'RNA binding protein 46' (RBM46). A highly evolutionarily conserved gene, Rbm46 is also essential for fertility in both flies and fish.

View Article and Find Full Text PDF

The mammalian SWI/SNF nucleosome remodeler is essential for spermatogenesis. Here, we identify a role for ARID2, a PBAF (Polybromo - Brg1 Associated Factor)-specific subunit, in meiotic division. Arid2 spermatocytes arrest at metaphase-I and are deficient in spindle assembly, kinetochore-associated Polo-like kinase1 (PLK1), and centromeric targeting of Histone H3 threonine3 phosphorylation (H3T3P) and Histone H2A threonine120 phosphorylation (H2AT120P).

View Article and Find Full Text PDF

Aurora A kinase (AURKA) is an important regulator of cell division and is required for assembly of the mitotic spindle. We recently reported the unusual finding that this mitotic kinase is also found on the sperm flagellum. To determine its requirement in spermatogenesis, we generated conditional knockout animals with deletion of the Aurka gene in either spermatogonia or spermatocytes to assess its role in mitotic and postmitotic cells, respectively.

View Article and Find Full Text PDF

Spermatogonial stem cells (SSCs) both self-renew and give rise to progenitors that initiate spermatogenic differentiation in the mammalian testis. Questions remain regarding the extent to which the SSC and progenitor states are functionally distinct. Here we provide the first multiparametric integrative analysis of mammalian germ cell epigenomes comparable with that done for >100 somatic cell types by the ENCODE Project.

View Article and Find Full Text PDF

Sirolimus, also known as rapamycin, and its closely related rapamycin analog (rapalog) Everolimus inhibit "mammalian target of rapamycin complex 1" (mTORC1), whose activity is required for spermatogenesis. Everolimus is Food and Drug Administration approved for treating human patients to slow growth of aggressive cancers and preventing organ transplant rejection. Here, we test the hypothesis that rapalog inhibition of mTORC1 activity has a negative, but reversible, impact upon spermatogenesis.

View Article and Find Full Text PDF

This is a translation and modern interpretation of one of the most important manuscripts on spermatogenesis, published by Victor von Ebner, in 1871. It was originally written in Italian, and to the best of my knowledge has never been translated to English or examined by modern scientists.

View Article and Find Full Text PDF

Docosahexaenoic acid (DHA) is an ω-3 dietary-derived polyunsaturated fatty acid of marine origin enriched in testes and necessary for normal fertility, yet the mechanisms regulating the enrichment of DHA in the testes remain unclear. Long-chain ACSL6 (acyl-CoA synthetase isoform 6) activates fatty acids for cellular anabolic and catabolic metabolism by ligating a CoA to a fatty acid, is highly expressed in testes, and has high preference for DHA. Here, we investigated the role of ACSL6 for DHA enrichment in the testes and its requirement for male fertility.

View Article and Find Full Text PDF

In the mammalian testis, sustained spermatogenesis relies on spermatogonial stem cells (SSCs); their progeny either remain as stem cells (self-renewal) or proliferate and differentiate to enter meiosis in response to retinoic acid (RA). Here, we sought to uncover elusive mechanisms regulating a key switch fundamental to spermatogonial fate: the capacity of spermatogonia to respond to RA. Using the developing mouse testis as a model, we found that spermatogonia and precursor prospermatogonia exhibit a heterogeneous capacity to respond to RA with at least two underlying causes.

View Article and Find Full Text PDF

Spermatogenesis is a complex and dynamic cellular differentiation process critical to male reproduction and sustained by spermatogonial stem cells (SSCs). Although patterns of gene expression have been described for aggregates of certain spermatogenic cell types, the full continuum of gene expression patterns underlying ongoing spermatogenesis in steady state was previously unclear. Here, we catalog single-cell transcriptomes for >62,000 individual spermatogenic cells from immature (postnatal day 6) and adult male mice and adult men.

View Article and Find Full Text PDF

The self-renewal, proliferation, and differentiation of the spermatogonial populations must be finely coordinated in the mammalian testis, as dysregulation of these processes can lead to subfertility, infertility, or the formation of tumors. There are wide gaps in our understanding of how these spermatogonial populations are formed and maintained, and our laboratory has focused on identifying the molecular and cellular pathways that direct their development. Others and we have shown, using a combination of pharmacologic inhibitors and genetic models, that activation of mTOR complex 1 (mTORC1) is important for spermatogonial differentiation in vivo.

View Article and Find Full Text PDF

Throughout the male reproductive lifespan, spermatogonial stem cells (SSCs) produce committed progenitors that proliferate and then remain physically connected in growing clones via short cylindrical intercellular bridges (ICBs). These ICBs, which enlarge in meiotic spermatocytes, have been demonstrated to provide a conduit for postmeiotic haploid spermatids to share sex chromosome-derived gene products. In addition to ICBs, spermatogonia exhibit multiple thin cytoplasmic projections.

View Article and Find Full Text PDF

Mammalian male germ cell development takes place in the testis under the influence of a variety of somatic cells and an incompletely defined paracrine and endocrine influences. Since it is not recapitulated well in vitro, researchers studying spermatogenesis often manipulate the germline by creating transgenic or knockout mice or by administering pharmaceutical agonists/antagonists or inhibitors. The effects of these types of manipulations on germline development can often be determined following microscopic imaging, both of stained and immunostained testis sections.

View Article and Find Full Text PDF

Spermatogonial stem cells must balance self-renewal with production of transit-amplifying progenitors that differentiate in response to retinoic acid (RA) before entering meiosis. This self-renewal vs. differentiation fate decision is critical for maintaining tissue homeostasis, as imbalances cause defects that can lead to human testicular cancer or infertility.

View Article and Find Full Text PDF