The function of DNA methylation in insects and the DNA methyltransferase (Dnmt) genes that influence methylation remains uncertain. We used RNA interference to reduce the gene expression of Dnmt1 within the whitefly Bemisia tabaci (Hemiptera:Aleyrodidae; Gennadius), a hemipteran species that relies on Dnmt1 for proper gametogenesis. We then used RNA-seq to test an a priori hypothesis that meiosis-related genetic pathways would be perturbed.
View Article and Find Full Text PDFThe evolutionary repercussions of parental effects-the impact of the developmental environment provided by parents on offspring-are often discussed as static effects that can have negative influences on offspring fitness that may even persist across generations. However, individuals are not passive recipients and may mitigate the persistence of parental effects through their behaviour. Here, we tested how the burying beetle, Nicrophorus orbicollis, a species with complex parental care, responded to poor parenting.
View Article and Find Full Text PDFBackground: The function of DNA methyltransferase genes of insects is a puzzle, because an association between gene expression and methylation is not universal for insects. If the genes normally involved in cytosine methylation are not influencing gene expression, what might be their role? We previously demonstrated that gametogenesis of Oncopeltus fasciatus is interrupted at meiosis following knockdown of DNA methyltransferase 1 (Dnmt1) and this is unrelated to changes in levels of cytosine methylation. Here, using transcriptomics, we tested the hypothesis that Dmnt1 is a part of the meiotic gene pathway.
View Article and Find Full Text PDFParental care is thought to evolve through modification of behavioral precursors, which predicts that mechanistic changes occur in the genes underlying those traits. The duplicated gene system of oxytocin/vasopressin has been broadly co-opted across vertebrates to influence parenting, from a preduplication ancestral role in water balance. It remains unclear whether co-option of these genes for parenting is limited to vertebrates.
View Article and Find Full Text PDFThe whitefly Bemisia tabaci is a globally important crop pest that is difficult to manage through current commercially available methods. While RNA interference (RNAi) is a promising strategy for managing this pest, effective target genes remain unclear. We suggest DNA methyltransferase 1 (Dnmt1) as a potential target gene due to its effect on fecundity in females in other taxa of insects.
View Article and Find Full Text PDFPlasticity in developmental processes gives rise to remarkable environmentally induced phenotypes. Some of the most striking and well-studied examples of developmental plasticity are seen in insects. For example, beetle horn size responds to nutritional state, butterfly eyespots are enlarged in response to temperature and humidity, and environmental cues also give rise to the queen and worker castes of eusocial insects.
View Article and Find Full Text PDFFlexible interactions between parents and offspring are essential for buffering families against variable, unpredictable, and challenging environmental conditions. In the subsocial carrion beetle, Nicrophorus orbicollis, mid-summer temperatures impose steep fitness costs on parents and offspring but do not elicit behavioural plasticity in parents. Here, we ask if plasticity of gene expression underpins this behavioural stability or facilitates independent compensation by larvae.
View Article and Find Full Text PDFHow does one genome give rise to multiple, often markedly different, phenotypes in response to an environmental cue? This phenomenon, known as phenotypic plasticity, is common amongst plants and animals, but arguably the most striking examples are seen in insects. Well-known insect examples include seasonal morphs of butterfly wing patterns, sexual and asexual reproduction in aphids, and queen and worker castes of eusocial insects. Ultimately, we need to understand how phenotypic plasticity works at a mechanistic level; how do environmental signals alter gene expression, and how are changes in gene expression translated into novel morphology, physiology and behaviour? Understanding how plasticity works is of major interest in evolutionary-developmental biology and may have implications for understanding how insects respond to global change.
View Article and Find Full Text PDFUnderstanding the genetic influences of traits of nonmodel organisms is crucial to understanding how novel traits arise. Do new traits require new genes or are old genes repurposed? How predictable is this process? Here, we examine this question for gene expression influencing parenting behavior in a beetle, . Parental care, produced from many individual behaviors, should be influenced by changes of expression of multiple genes, and one suggestion is that the genes can be predicted based on knowledge of behavior expected to be precursors to parental care, such as aggression, resource defense, and mating on a resource.
View Article and Find Full Text PDFParental care was likely the first step most lineages made towards sociality. However, the molecular mechanisms that generate parental care are not broadly characterized. Insects are important as an evolutionary independent group from classic models of parental care, such as, house mice.
View Article and Find Full Text PDFIntense physical competition between males for mating opportunities is widespread among mammals. In such agonistic encounters, males with combinations of morphological, physiological and behavioral characters that allow them to dominate an opponent have greater fitness. However, the specific physical traits associated with competitive ability are poorly understood.
View Article and Find Full Text PDFSexual dimorphism often arises as a response to selection on traits that improve a male's ability to physically compete for access to mates. In primates, sexual dimorphism in body mass and canine size is more common in species with intense male-male competition. However, in addition to these traits, other musculoskeletal adaptations may improve male fighting performance.
View Article and Find Full Text PDFBehaviour is often a front line response to changing environments. Recent studies show behavioural changes are associated with changes of gene expression; however, these studies have primarily focused on discrete behavioural states. We build on these studies by addressing additional contexts that produce qualitatively similar behavioural changes.
View Article and Find Full Text PDFWith growing numbers of sequenced genomes, increasing numbers of duplicate genes are being uncovered. Here we examine , a gene in the natural resistance-associated macrophage protein (Nramp) family, that has been duplicated in the subsocial beetle, , which exhibits advanced parental behavior. There is only one copy of in honey bees and Drosophila, whereas in vertebrates there are two copies that are subfunctionalized.
View Article and Find Full Text PDFMany studies have shown that variation in transcription is associated with changes in behavioral state, or with variation within a state, but little has been done to address if the same genes are involved in both. Here, we investigate the transcriptional basis of variation in parental provisioning using two species of burying beetle, Nicrophorus orbicollis and Nicrophorus vespilloides. We used RNA-seq to compare transcription in parents that provided high amounts of provisioning behavior versus low amounts in males and females of each species.
View Article and Find Full Text PDFEthologists predicted that parental care evolves by modifying behavioural precursors in the asocial ancestor. As a corollary, we predict that the evolved mechanistic changes reside in genetic pathways underlying these traits. Here we test our hypothesis in female burying beetles, Nicrophorus vespilloides, an insect where caring adults regurgitate food to begging, dependent offspring.
View Article and Find Full Text PDFThe genetics of complex social behaviour can be dissected by examining the genetic influences of component pathways, which can be predicted based on expected evolutionary precursors. Here, we examine how gene expression in a pathway that influences the motivation to eat is altered during parental care that involves direct feeding of larvae. We examine the expression of neuropeptide F, and its receptor, in the burying beetle Nicrophorus vespilloides, which feeds pre-digested carrion to its begging larvae.
View Article and Find Full Text PDFTesting for conserved and novel mechanisms underlying phenotypic evolution requires a diversity of genomes available for comparison spanning multiple independent lineages. For example, complex social behavior in insects has been investigated primarily with eusocial lineages, nearly all of which are Hymenoptera. If conserved genomic influences on sociality do exist, we need data from a wider range of taxa that also vary in their levels of sociality.
View Article and Find Full Text PDFParenting in the burying beetle Nicrophorus vespilloides is complex and, unusually, the sex and number of parents that can be present is flexible. Such flexibility is expected to involve specialized behaviour by the two sexes under biparental conditions. Here, we show that offspring fare equally well regardless of the sex or number of parents present.
View Article and Find Full Text PDFComplex social behaviour in Hymenoptera has been hypothesized to evolve by co-opting reproductive pathways (the ovarian ground plan hypothesis, OGPH) and gene networks (the reproductive ground plan hypothesis, RGPH). In support of these hypotheses, in eusocial Hymenoptera where there is reproductive division of labour, the yolk precursor protein vitellogenin (Vg) influences the expression of worker social behaviour. We suggest that co-opting genes involved in reproduction may occur more generally than just in the evolution of eusociality; i.
View Article and Find Full Text PDFOctopamine regulates the function of many tissues and physiological processes in invertebrates. The expression of octopamine receptor genes has been examined in multiple tissue types in several different insect orders. However, little work has addressed this issue in Coleoptera.
View Article and Find Full Text PDFConspecifics of many animal species physically compete to gain reproductive resources and thus fitness. Despite the importance of competitive ability across the animal kingdom, specific traits that influence or underpin competitive ability are poorly characterized. Here, we investigate whether there are genetic influences on competitive ability within male house mice.
View Article and Find Full Text PDFThe history of life offers plentiful examples of convergent evolution, the independent derivation of similar phenotypes in distinct lineages. The emergence of convergent phenotypes among closely related lineages (frequently termed "parallel" evolution) is often assumed to result from changes in similar genes or developmental pathways, but the genetic origins of convergence remains poorly understood. Ninespine (Pungitius pungitius) and threespine (Gasterosteus aculeatus) stickleback fish provide many examples of convergent evolution of adaptive phenotypes, both within and between genera.
View Article and Find Full Text PDF