Histone methyltransferases (HMTs) are crucial in gene regulation and function, yet their role in natural killer (NK) cell biology within the tumor microenvironment (TME) remains largely unknown. We demonstrate that the HMT DOT1L limits NK cell conversion to CD49a+ CD49b+ intILC1, a subset that can be observed in the TME in response to stimulation with transforming growth factor (TGF)-β and is correlated with impaired tumor control. Deleting Dot1l in NKp46-expressing cells reveals its pivotal role in maintaining NK cell phenotype and function.
View Article and Find Full Text PDFNatural killer (NK) cells are the prototype innate effector lymphocyte population that plays an important role in controlling viral infections and tumors. Studies demonstrating that NK cells form long-lived memory populations, akin to those generated by adaptive immune cells, prompted a revaluation of the potential functions of NK cells. Recent data demonstrating that NK cells are recruited from the circulation into tissues where they form long-lived memory-like populations further emphasize that NK cells have properties that mirror those of adaptive immune cells.
View Article and Find Full Text PDFEndothelial function and integrity are compromised after allogeneic bone marrow transplantation (BMT), but how this affects immune responses broadly remains unknown. Using a preclinical model of CMV reactivation after BMT, we found compromised antiviral humoral responses induced by IL-6 signaling. IL-6 signaling in T cells maintained Th1 cells, resulting in sustained IFN-γ secretion, which promoted endothelial cell (EC) injury, loss of the neonatal Fc receptor (FcRn) responsible for IgG recycling, and rapid IgG loss.
View Article and Find Full Text PDFIkaros transcription factors are essential for adaptive lymphocyte function, yet their role in innate lymphopoiesis is unknown. Using conditional genetic inactivation, we show that Ikzf1/Ikaros is essential for normal natural killer (NK) cell lymphopoiesis and IKZF1 directly represses Cish, a negative regulator of interleukin-15 receptor resulting in impaired interleukin-15 receptor signaling. Both Bcl2l11 and BIM levels, and intrinsic apoptosis were increased in Ikzf1-null NK cells, which in part accounts for NK lymphopenia as both were restored to normal levels when Ikzf1 and Bcl2l11 were co-deleted.
View Article and Find Full Text PDFTissue health is dictated by the capacity to respond to perturbations and then return to homeostasis. Mechanisms that initiate, maintain, and regulate immune responses in tissues are therefore essential. Adaptive immunity plays a key role in these responses, with memory and tissue residency being cardinal features.
View Article and Find Full Text PDFMyxovirus resistance (Mx) proteins are dynamin-like GTPases that are inducible by interferons (IFNs) following virus infections. Most studies investigating Mx proteins have focused on their activity against influenza A viruses (IAV), although emerging evidence suggests that some Mx proteins may exhibit broader antiviral activity. Herein, we demonstrate that in addition to IAV, overexpression of mouse Mx1 (mMx1), but not mMx2, resulted in potent inhibition of growth of the human alphaherpesviruses herpes simplex virus 1 (HSV-1) and HSV-2, whereas neither inhibited the mouse betaherpesvirus murine cytomegalovirus (MCMV) .
View Article and Find Full Text PDFHhex encodes a homeobox transcriptional regulator important for embryonic development and hematopoiesis. Hhex is highly expressed in NK cells, and its germline deletion results in significant defects in lymphoid development, including NK cells. To determine if Hhex is intrinsically required throughout NK cell development or for NK cell function, we generate mice that specifically lack Hhex in NK cells.
View Article and Find Full Text PDFNg et al. have identified NKG7 as a regulator of inflammation in response to diverse immunological challenges. While NKG7 was required for the degranulation of cytotoxic cells, additional defects including reduced expansion and trafficking of CD8 T cells, and altered antigen presentation, were noted in NKG7-deficient mice.
View Article and Find Full Text PDFBiochim Biophys Acta Proteins Proteom
September 2020
We investigated the molecular basis for the remarkably different survival outcomes of mice expressing different alloforms of the pro-apoptotic serine protease granzyme B to mouse cytomegalovirus infection. Whereas C57BL/6 mice homozygous for granzyme B (GzmB) raise cytotoxic T lymphocytes that efficiently kill infected cells, those of C57BL/6 mice congenic for the outbred allele (GzmB) fail to kill MCMV-infected cells and died from uncontrolled hepatocyte infection and acute liver failure. We identified subtle differences in how GzmB and GzmB activate cell death signalling - both alloforms predominantly activated pro-caspases directly, and cleaved pro-apoptotic Bid poorly.
View Article and Find Full Text PDFThe adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD) is known to facilitate caspase-1 activation, which is essential for innate host immunity via the formation of the inflammasome complex, a multiprotein structure responsible for processing IL1β and IL18 into their active moieties. Here, we demonstrated that ASC-deficient CD8 T cells failed to induce severe graft-versus-host disease (GVHD) and had impaired capacity for graft rejection and graft-versus-leukemia (GVL) activity. These effects were inflammasome independent because GVHD lethality was not altered in recipients of caspase-1/11-deficient T cells.
View Article and Find Full Text PDFThe influence of environmental insults on the onset and progression of mitochondrial diseases is unknown. To evaluate the effects of infection on mitochondrial disease we used a mouse model of Leigh Syndrome, where a missense mutation in the Taco1 gene results in the loss of the translation activator of cytochrome c oxidase subunit I (TACO1) protein. The mutation leads to an isolated complex IV deficiency that mimics the disease pathology observed in human patients with TACO1 mutations.
View Article and Find Full Text PDFNatural killer (NK) cells display some features equivalent to those of adaptive immune effectors, but the molecular processes underlying these adaptive-like characteristics are just beginning to be defined. In this issue of Immunity, Adams et al. (2019) and Grassmann et al.
View Article and Find Full Text PDFCytomegalovirus infection is a frequent and life-threatening complication that significantly limits positive transplantation outcomes. We developed preclinical mouse models of cytomegalovirus reactivation after transplantation and found that humoral immunity is essential for preventing viral recrudescence. Preexisting antiviral antibodies decreased after transplant in the presence of graft-versus-host disease and were not replaced, owing to poor reconstitution of donor B cells and elimination of recipient plasma cells.
View Article and Find Full Text PDFRecent outbreaks of Ebola and Zika have highlighted the possibility that viruses may cause enduring infections in tissues like the eye, including the neural retina, which have been considered immune privileged. Whether this is a peculiarity of exotic viruses remains unclear, since the impact of more common viral infections on neural compartments has not been examined, especially in immunocompetent hosts. Cytomegalovirus is a common, universally distributed pathogen, generally innocuous in healthy individuals.
View Article and Find Full Text PDFTRAIL is an apoptosis-inducing ligand constitutively expressed on liver-resident type 1 innate lymphoid cells (ILC1s) and a subset of natural killer (NK) cells, where it contributes to NK cell anti-tumor, anti-viral, and immunoregulatory functions. However, the intrinsic pathways involved in TRAIL expression in ILCs remain unclear. Here, we demonstrate that the murine natural cytotoxic receptor mNKp46/NCR1, expressed on ILC1s and NK cells, controls TRAIL protein expression.
View Article and Find Full Text PDFOcular antigens are sequestered behind the blood-retina barrier and the ocular environment protects ocular tissues from autoimmune attack. The signals required to activate autoreactive T cells and allow them to cause disease in the eye remain in part unclear. In particular, the consequences of peripheral presentation of ocular antigens are not fully understood.
View Article and Find Full Text PDFNatural killer (NK) cells are known as frontline responders capable of rapidly mediating a response upon encountering transformed or infected cells. Recent findings indicate that NK cells, in addition to acting as innate effectors, can also regulate adaptive immune responses. Here, we review recent studies on the immunoregulatory function of NK cells with a specific focus on their ability to affect the generation of early, as well as long-term antiviral T cell responses, and their role in modulating immune pathology and disease.
View Article and Find Full Text PDFThe detection of aberrant cells by natural killer (NK) cells is controlled by the integration of signals from activating and inhibitory ligands and from cytokines such as IL-15. We identified cytokine-inducible SH2-containing protein (CIS, encoded by Cish) as a critical negative regulator of IL-15 signaling in NK cells. Cish was rapidly induced in response to IL-15, and deletion of Cish rendered NK cells hypersensitive to IL-15, as evidenced by enhanced proliferation, survival, IFN-γ production and cytotoxicity toward tumors.
View Article and Find Full Text PDFViral infection is a common, life-threatening complication after allogeneic bone marrow transplantation (BMT), particularly in the presence of graft-versus-host disease (GVHD). Using cytomegalovirus (CMV) as the prototypic pathogen, we have delineated the mechanisms responsible for the inability to mount protective antiviral responses in this setting. Although CMV infection was self-limiting after syngeneic BMT, in the presence of GVHD after allogeneic BMT, CMV induced a striking cytopathy resulting in universal mortality in conjunction with a fulminant necrotizing hepatitis.
View Article and Find Full Text PDFInflammasomes are protein complexes that promote caspase activation, resulting in processing of IL-1β and cell death, in response to infection and cellular stresses. Inflammasomes have been anticipated to contribute to autoimmunity. The New Zealand Black (NZB) mouse develops anti-erythrocyte Abs and is a model of autoimmune hemolytic anemia.
View Article and Find Full Text PDFNatural killer (NK) cells are naturally circulating innate lymphoid cells that protect against tumor initiation and metastasis and contribute to immunopathology during inflammation. The signals that prime NK cells are not completely understood, and, although the importance of IFN type I is well recognized, the role of type III IFN is comparatively very poorly studied. IL-28R-deficient mice were resistant to LPS and cecal ligation puncture-induced septic shock, and hallmark cytokines in these disease models were dysregulated in the absence of IL-28R.
View Article and Find Full Text PDFMany immune response genes are highly polymorphic, consistent with the selective pressure imposed by pathogens over evolutionary time, and the need to balance infection control with the risk of auto-immunity. Epidemiological and genomic studies have identified many genetic variants that confer susceptibility or resistance to pathogenic micro-organisms. While extensive polymorphism has been reported for the granzyme B (GzmB) gene, its relevance to pathogen immunity is unexplored.
View Article and Find Full Text PDF