Ultraviolet photodissociation (UVPD) has been shown to be a versatile ion activation strategy for the characterization of peptides and intact proteins among other classes of biological molecules. Combining the high-performance mass spectrometry (MS/MS) capabilities of UVPD with the high-resolution separation of trapped ion mobility spectrometry (TIMS) presents an opportunity for enhanced structural elucidation of biological molecules. In the present work, we integrate a 193 nm excimer laser in a TIMS-time-of-flight (TIMS-TOF) mass spectrometer for UVPD in the collision cell and use it for the analysis of several mass-mobility-selected species of ubiquitin and myoglobin.
View Article and Find Full Text PDFModern research faces increasingly complex materials with a constant need for new analytical strategies that can provide deeper levels of chemical insight. Ultrahigh resolution mass spectrometry (MS), particularly Fourier transform ion cyclotron resonance (FTICR) MS, has provided a robust analytical foundation. However, MS alone offers limited structural information.
View Article and Find Full Text PDFTwo-dimensional mass spectrometry (2D MS) is a multiplexed tandem mass spectrometry method that does not rely on ion isolation to correlate the precursor and fragment ions. On a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS), 2D MS instead uses the modulation of precursor ion radii inside the ICR cell before fragmentation and yields 2D mass spectra that show the fragmentation patterns of all the analytes. In this study, we perform 2D MS for the first time with quadrupolar detection in a dynamically harmonized ICR cell.
View Article and Find Full Text PDF"Top-down" proteomics analyzes intact proteins and identifies proteoforms by their intact mass as well as the observed fragmentation pattern in tandem mass spectrometry (MS/MS) experiments. Recently, hybrid ion mobility spectrometry-mass spectrometry (IM/MS) methods have gained traction for top-down experiments, either by allowing top-down analysis of individual isomers or alternatively by improving signal/noise and dynamic range for fragment ion assignment. We recently described the construction of a tandem-trapped ion mobility spectrometer/mass spectrometer (tandem-TIMS/MS) coupled with an ultraviolet (UV) laser and demonstrated a proof-of-principle for top-down analysis by UV photodissociation (UVPD) at 2-3 mbar.
View Article and Find Full Text PDFIon mobility mass spectrometry (IM-MS) has proven to be an excellent method to characterize the structure of amyloidogenic protein and peptide aggregates, which are formed in coincidence with the development of neurodegenerative diseases. However, it remains a challenge to obtain detailed structural information on all conformational intermediates, originating from the early onset of those pathologies, due to their complex and heterogeneous environment. One way to enhance the insights and the identification of these early stage oligomers is by employing high resolution ion mobility mass spectrometry experiments.
View Article and Find Full Text PDFUltraviolet photodissociation is a fast, photon-mediated fragmentation method that yields high sequence coverage and informative cleavages of biomolecules. In this work, 193 nm UVPD was coupled with a 12 Tesla FT-ICR mass spectrometer and 10.6 μm infrared multi-photon dissociation to provide gentle slow-heating of UV-irradiated ions.
View Article and Find Full Text PDFUnderstanding modification of synthetic polymer structures is necessary for their accurate synthesis and potential applications. In this contribution, a series of partially hydrolyzed poly(2-oxazoline) species were produced forming poly[(2-polyoxazoline)--(ethylenimine)] (P(EtOx--EI)) copolymers; EI being the hydrolyzed product of Ox. Bulk mass spectrometry (MS) measurements accurately measured the EI content.
View Article and Find Full Text PDFThe fine structure of isotopic peak distributions of glutathione in mass spectra is measured using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) at 12 and 15 T magnetic field, with an infinity cell and a dynamically harmonized cell (DHC) respectively. The resolved peaks in the fine structure of glutathione consist of H, C, N, O, O, S, S, S, and combinations of them. The positions of the measured fine structure peaks agree with the simulated isotopic distributions with the mass error less than 250 ppb in broadband mode for the infinity cell and no more than 125 ppb with the DHC after internal calibration.
View Article and Find Full Text PDFBio-oils are precursors for biofuels but are highly corrosive necessitating further upgrading. Furthermore, bio-oil samples are highly complex and represent a broad range of chemistries. They are complex mixtures not simply because of the large number of poly-oxygenated compounds but because each composition can comprise many isomers with multiple functional groups.
View Article and Find Full Text PDFVitamin D compounds are a group of secosteroids derived from cholesterol that are vital for maintaining bone health in humans. Recent studies have shown extraskeletal effects of vitamin D, involving vitamin D metabolites such as the dihydroxylated vitamin D compounds 1,25-dihydroxyvitamin D and 24,25-dihydroxyvitamin D. Differentiation and characterization of these isomers by mass spectrometry can be challenging due to the zero-mass difference and minor structural differences between them.
View Article and Find Full Text PDFRationale: Tandem-ion mobility spectrometry/mass spectrometry methods have recently gained traction for the structural characterization of proteins and protein complexes. However, ion activation techniques currently coupled with tandem-ion mobility spectrometry/mass spectrometry methods are limited in their ability to characterize structures of proteins and protein complexes.
Methods: Here, we describe the coupling of the separation capabilities of tandem-trapped ion mobility spectrometry/mass spectrometry (tTIMS/MS) with the dissociation capabilities of ultraviolet photodissociation (UVPD) for protein structure analysis.
Due to the natural dispersity that is present in synthetic polymers, an added complexity is always present in the analysis of polymeric species. Tandem mass spectrometry analysis requires the isolation of individual precursors before a fragmentation event to allow the unambiguous characterization of these species and is not viable at certain levels of complexity due to achievable isolation widths. Two-dimensional mass spectrometry (2DMS) fragments ions and correlates fragments with their corresponding precursors without the need for isolation.
View Article and Find Full Text PDFUltraviolet photodissociation (UVPD) has been shown to produce extensive structurally informative data for a variety of chemically diverse compounds. Herein, we demonstrate the performance of the 193 nm UVPD fragmentation technique on structural/moiety characterization of 14 singly charged agrochemicals. Two-dimensional mass spectrometry (2DMS) using infrared multiphoton dissociation (IRMPD) and electron-induced dissociation (EID) have previously been applied to a select range of singly charged pesticides.
View Article and Find Full Text PDFTwo-dimensional mass spectrometry (2DMS) is a new, and theoretically ideal, data-independent analysis tool, which allows the characterization of a complex mixture and was used in the bottom-up analysis of IgG1 for the identification of post-translational modifications. The new peak picking algorithm allows the distinction between chimeric peaks in proteomics. In this application, the processing of 2DMS data correlates fragments to their corresponding precursors, with fragments from precursors which are <0.
View Article and Find Full Text PDFThe structure and sequence elucidation of complex homo- and copolymers is key for further understanding polymers, polymer synthesis, and polymer interactions in biological processes. In this contribution, poly(dimethylacrylamide) homo- and dimethylacrylamide/4-acryloylmorpholine block copolymers were synthesized and analyzed by electron capture dissociation (ECD) and Fourier transform ion cyclotron resonance (FT-ICR) tandem mass spectrometry. Double-resonance experiments were carried out, providing a better understanding of the fragmentation process.
View Article and Find Full Text PDFDeamidated amyloid proteins have been shown to accelerate fibril formation. Herein, the results show the inhibition performance and the interaction site between site-specific inhibitor and amyloid protein are significantly influenced by deamidation; while the inhibition mechanism of non-site specific inhibitor shows no significant disruption caused by amyloid protein deamidation.
View Article and Find Full Text PDFAnalysis of agrochemicals in an environmental matrix is challenging because these samples contain multiple agrochemicals, their metabolites, degradation products, and endogenous compounds. The analysis of such complex samples is achieved using chromatographic separation techniques coupled to mass spectrometry. Herein, we demonstrate a two-dimensional mass spectrometry (2DMS) technique on a 12 T Fourier transform ion cyclotron resonance mass spectrometer that can analyze a mixture of agrochemicals without using chromatography or quadrupole isolation in a single experiment.
View Article and Find Full Text PDFDetection and characterization of phosphopeptides by infrared multiphoton dissociation two-dimensional mass spectrometry (IRMPD 2DMS) is shown to be particularly effective. A mixture of phosphopeptides was analyzed by 2DMS without any prior separation. 2DMS enables the data independent analysis of the mixture and the correlation of the fragments to their precursor ions.
View Article and Find Full Text PDFThe Os arene anticancer complex [(η-bip)Os(en)Cl] (Os1-Cl; where bip = biphenyl and en = ethylenediamine) binds strongly to DNA and biomolecules. Here we investigate the interaction between Os1-Cl and the model protein, BSA, using ultrahigh resolution Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS). The specific binding location of Os1 on BSA was investigated with the use of collisionally activated dissociation (CAD) and electron capture dissociation (ECD).
View Article and Find Full Text PDFAmyloid fibril formation is a hallmark in a range of human diseases. Analysis of the molecular details of amyloid aggregation, however, is limited by the difficulties in solubilizing, separating, and identifying the aggregated biomolecules. Additional labeling or protein modification is required in many current analytical techniques in order to provide molecular details of amyloid protein aggregation, but these modifications may result in protein structure disruption.
View Article and Find Full Text PDFInvestigating the structure of active ingredients, such as agrochemicals and their associated metabolites, is a crucial requisite in the discovery and development of these molecules. In this study, structural characterization by electron-induced dissociation (EID) was compared to collisionally activated dissociation (CAD) on a series of agrochemicals. EID fragmentation produced a greater variety of fragment ions and complementary ion pairs leading to more complete functional group characterization compared to CAD.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
December 2019
Two-dimensional mass spectrometry (2D MS) is a data-independent tandem mass spectrometry technique in which precursor and fragment ion species can be correlated without the need for prior ion isolation. The behavior of phase in 2D Fourier transform mass spectrometry is investigated with respect to the calculation of phase-corrected absorption-mode 2D mass spectra. 2D MS datasets have a phase that is defined differently in each dimension.
View Article and Find Full Text PDFNative top-down mass spectrometry is a fast, robust biophysical technique that can provide molecular-scale information on the interaction between proteins or peptides and ligands, including metal cations. Here we have analyzed complexes of the full-length amyloid β (1-42) monomer with a range of (patho)physiologically relevant metal cations using native Fourier transform ion cyclotron resonance mass spectrometry and three different fragmentation methods-collision-induced dissociation, electron capture dissociation, and infrared multiphoton dissociation-all yielding consistent results. Amyloid β is of particular interest as its oligomerization and aggregation are major events in the etiology of Alzheimer's disease, and it is known that interactions between the peptide and bioavailable metal cations have the potential to significantly damage neurons.
View Article and Find Full Text PDFThe most widely used anticancer drugs are platinum complexes, but complexes of other transition metals also show promise and may widen the spectrum of activity, reduce side-effects, and overcome resistance. The latter include organo-iridium(iii) 'piano-stool' complexes. To understand their mechanism of action, it is important to discover how they bind to biomolecules and how binding is affected by functionalisation of the ligands bound to iridium.
View Article and Find Full Text PDFMass spectrometry has been applied to determine the deamidation sites and the aggregation region of the deamidated human islet amyloid polypeptide (hIAPP). Mutant hIAPP with iso-aspartic residue mutations at possible deamidation sites showed very different fibril formation behaviour, which correlates with the observed deamidation-induced acceleration of hIAPP aggregation.
View Article and Find Full Text PDF