Publications by authors named "Christopher A Luckhurst"

Mutations in SNCA, the gene encoding α-synuclein (αSyn), cause familial Parkinson's disease (PD) and aberrant αSyn is a key pathological hallmark of idiopathic PD. This α-synucleinopathy leads to mitochondrial dysfunction, which may drive dopaminergic neurodegeneration. PARKIN and PINK1, mutated in autosomal recessive PD, regulate the preferential autophagic clearance of dysfunctional mitochondria ("mitophagy") by inducing ubiquitylation of mitochondrial proteins, a process counteracted by deubiquitylation via USP30.

View Article and Find Full Text PDF

The Rho kinase (ROCK) pathway is implicated in the pathogenesis of several conditions, including neurological diseases. In Huntington's disease (HD), ROCK is implicated in mutant huntingtin (HTT) aggregation and neurotoxicity, and members of the ROCK pathway are increased in HD mouse models and patients. To validate this mode of action as a potential treatment for HD, we sought a potent, selective, central nervous system (CNS)-penetrant ROCK inhibitor.

View Article and Find Full Text PDF

Using an iterative structure-activity relationship driven approach, we identified a CNS-penetrant 5-(trifluoromethyl)-1,2,4-oxadiazole (TFMO, ) with a pharmacokinetic profile suitable for probing class IIa histone deacetylase (HDAC) inhibition in vivo. Given the lack of understanding of endogenous class IIa HDAC substrates, we developed a surrogate readout to measure compound effects in vivo, by exploiting the >100-fold selectivity compound exhibits over class I/IIb HDACs. We achieved adequate brain exposure with compound in mice to estimate a class I/IIb deacetylation EC, using class I substrate H4K12 acetylation and global acetylation levels as a pharmacodynamic readout.

View Article and Find Full Text PDF

We have identified a potent, cell permeable and CNS penetrant class IIa histone deacetylase (HDAC) inhibitor 22, with >500-fold selectivity over class I HDACs (1,2,3) and ∼150-fold selectivity over HDAC8 and the class IIb HDAC6 isoform. Dose escalation pharmacokinetic analysis demonstrated that upon oral administration, compound 22 can reach exposure levels in mouse plasma, muscle and brain in excess of cellular class IIa HDAC IC levels for ∼8 h. Given the interest in aberrant class IIa HDAC function for a number of neurodegenerative, neuromuscular, cardiac and oncology indications, compound 22 (also known as CHDI-390576) provides a selective and potent compound to query the role of class IIa HDAC biology, and the impact of class IIa catalytic site occupancy in vitro and in vivo.

View Article and Find Full Text PDF

Potent and selective class IIa HDAC tetrasubstituted cyclopropane hydroxamic acid inhibitors were identified with high oral bioavailability that exhibited good brain and muscle exposure. Compound 14 displayed suitable properties for assessment of the impact of class IIa HDAC catalytic site inhibition in preclinical disease models.

View Article and Find Full Text PDF

Inhibition of class IIa histone deacetylase (HDAC) enzymes have been suggested as a therapeutic strategy for a number of diseases, including Huntington's disease. Catalytic-site small molecule inhibitors of the class IIa HDAC4, -5, -7, and -9 were developed. These trisubstituted diarylcyclopropanehydroxamic acids were designed to exploit a lower pocket that is characteristic for the class IIa HDACs, not present in other HDAC classes.

View Article and Find Full Text PDF

A series of dual CCR3/H(1) antagonists based on a bispiperidine scaffold were discovered. Introduction of an acidic group overcame hERG liability. Bioavailability was optimised by modulation of physico-chemical properties and physical form to deliver a compound suitable for clinical evaluation.

View Article and Find Full Text PDF

The discovery and optimisation of a series of zwitterionic CCR3 antagonists is described. Optimisation of the structure led to AZ12436092, a compound with excellent selectivity over activity at hERG and outstanding pharmacokinetics in preclinical species.

View Article and Find Full Text PDF

Small molecule isoindoline and tetrahydroisoquinoline derivatives have been identified as selective agonists of human peroxisome proliferator-activated receptor δ (PPARδ. Compound 18 demonstrated efficacy in a biomarker for increased fatty acid oxidation, with upregulation of pyruvate dehydrogenase kinase, isozyme 4 (PDK4) in human primary myotubes.

View Article and Find Full Text PDF

We describe the discovery of small molecule benzazepine derivatives as agonists of human peroxisome proliferator-activated receptor δ (PPARδ) that displayed excellent selectivity over the PPARα and PPARγ subtypes. Compound 8 displayed good PK in the rat and efficacy in upregulation of pyruvate dehydrogenase kinase, isozyme 4 (PDK4) mRNA in human primary myotubes, a biomarker for increased fatty acid oxidation.

View Article and Find Full Text PDF