Publications by authors named "Christopher A Howard"

Despite their higher capacity compared to common intercalation- and conversion-type anodes, black phosphorus (BP) based anodes suffer from significant capacity fading attributed to the large volume expansion (∼300%) during lithiation. Downsizing BP into nanosheets has been proposed to mitigate this issue, and various methods, particularly mechanical mixing with graphitic materials (BP-C), have been explored to enhance electrochemical performance. However, the understanding of BP-C hybridization is hindered by the lack of studies focusing on fundamental degradation mechanisms within operational battery environments.

View Article and Find Full Text PDF

We study the photophysical stability of ensemble near-surface nitrogen vacancy (NV) centers in diamond under vacuum and air. The optically detected magnetic resonance contrast of the NV centers was measured following exposure to laser illumination, showing opposing trends in air compared to vacuum (increasing by up to 9% and dropping by up to 25%, respectively). Characterization using X-ray photoelectron spectroscopy (XPS) suggests a surface reconstruction: In air, atmospheric oxygen adsorption on a surface leads to an increase in NV fraction, whereas in vacuum, net oxygen desorption increases the NV fraction.

View Article and Find Full Text PDF

Phosphorene nanoribbons (PNRs) can be synthesised in intrinsically scalable methods from intercalation of black phosphorus (BP), however, the mechanism of ribbonisation remains unclear. Herein, to investigate the point at which nanoribbons form, we decouple the two key synthesis steps: first, the formation of the BP intercalation compound, and second, the dissolution into a polar aprotic solvent. We find that both the lithium intercalant and the negative charge on the phosphorus host framework can be effectively removed by addition of phenyl cyanide to return BP and investigate whether fracturing to ribbons occurred after the first step.

View Article and Find Full Text PDF

Crystalline two-dimensional carbon nitrides with polytriazine imide (PTI) structure are shown to act amphoterically, buffering both HCl and NaOH aqueous solutions, resulting in charged PTI layers that dissolve spontaneously in their aqueous media, particularly for the alkaline solutions. This provides a low energy, green route to their scalable solution processing. Protonation in acid is shown to occur at pyridinic nitrogens, stabilized by adjacent triazines, whereas deprotonation in base occurs primarily at basal plane NH bridges, although NH edge deprotonation is competitive.

View Article and Find Full Text PDF

The crystalline graphitic carbon nitride, poly-triazine imide (PTI) is highly unusual among layered materials since it is spontaneously soluble in aprotic, polar solvents including dimethylformamide (DMF). The PTI material consists of layers of carbon nitride intercalated with LiBr. When dissolved, the resulting solutions consist of dissolved, luminescent single to multilayer nanosheets of around 60-125 nm in diameter and Li+ and Br- ions originating from the intercalating salt.

View Article and Find Full Text PDF

This themed issue explores the different length and timescales that determine the physics and chemistry of a variety of key of materials, explored from the perspective of a wide range of disciplines, including physics, chemistry materials science, Earth science and biochemistry. The topics discussed include catalysis, chemistry under extreme conditions, energy materials, amorphous and liquid structure, hybrid organic materials and biological materials. The issue is in two parts, with this second set of contributions exploring hybrid organic materials, catalysis low-dimensional and graphitic materials, biological materials and naturally occurring, super-hard material as well as dynamic high pressure and new developments in imaging techniques pressure.

View Article and Find Full Text PDF

This themed issue explores the different length scales and timescales that determine the physics and chemistry of a variety of key materials, explored from the perspective of a wide range of disciplines, including physics, chemistry, materials science, Earth science and biochemistry. The topics discussed include catalysis, chemistry under extreme conditions, energy materials, amorphous and liquid structure, hybrid organic materials and biological materials. The issue is in two parts, with the present part exploring glassy and amorphous systems and materials at high pressure.

View Article and Find Full Text PDF

Quasi-1D nanoribbons provide a unique route to diversifying the properties of their parent 2D nanomaterial, introducing lateral quantum confinement and an abundance of edge sites. Here, a new family of nanomaterials is opened with the creation of arsenic-phosphorus alloy nanoribbons (AsPNRs). By ionically etching the layered crystal black arsenic-phosphorus using lithium electride followed by dissolution in amidic solvents, solutions of AsPNRs are formed.

View Article and Find Full Text PDF

Black phosphorene quantum dots (BPQDs) are most commonly derived from high-cost black phosphorus, while previous syntheses from the low-cost red phosphorus (P ) allotrope are highly oxidised. Herein, we present an intrinsically scalable method to produce high quality BPQDs, by first ball-milling P to create nanocrystalline P and subsequent reductive etching using lithium electride solvated in liquid ammonia. The resultant ~25 nm BPQDs are crystalline with low oxygen content, and spontaneously soluble as individualized monolayers in tertiary amide solvents, as directly imaged by liquid-phase transmission electron microscopy.

View Article and Find Full Text PDF

Numerous layered materials are being recognized as promising candidates for high-performance alkali-ion battery anodes, but black phosphorus (BP) has received particular attention. This is due to its high specific capacity, due to a mixed alkali-ion storage mechanism (intercalation-alloying), and fast alkali-ion transport within its layers. Unfortunately, BP based batteries are also commonly associated with serious irreversible losses and poor cycling stability.

View Article and Find Full Text PDF

The growing interest in the development of next-generation net zero energy systems has led to the expansion of molybdenum disulfide (MoS) research in this area. This activity has resulted in a wide range of manufacturing/synthesis methods, controllable morphologies, diverse carbonaceous composite structures, a multitude of applicable characterization techniques, and multiple energy applications for MoS. To assess the literature trends, 37,347 MoS research articles from Web of Science were text scanned to classify articles according to energy application research and characterization techniques employed.

View Article and Find Full Text PDF

Reduced graphene-oxide (RGO)-based electrodes in supercapacitors deliver high energy/power capacities compared to typical nanoporous carbon materials. However, extensive critical analysis of literature reveals enormous discrepancies (up to 250 F g ) in the reported capacitance (variation of 100-350 F g ) of RGO materials synthesized under seemingly similar methods, inhibiting an understanding of capacitance variation. Here, the key factors that control the capacitance performance of RGO electrodes are demonstrated by analyzing and optimizing various types of commonly applied electrode fabrication methods.

View Article and Find Full Text PDF

The structures of equimolar mixtures of the commonly used polar aprotic solvents dimethylformamide (DMF) and dimethylacetamide (DMAc) in dimethyl sulfoxide (DMSO) have been investigated via neutron diffraction augmented by extensive hydrogen/deuterium isotopic substitution. Detailed 3-dimensional structural models of these solutions have been derived from the neutron data via Empirical Potential Structure Refinement (EPSR). The intermolecular center-of-mass (CoM) distributions show that the first coordination shell of the amides comprises ∼13-14 neighbors, of which approximately half are DMSO.

View Article and Find Full Text PDF

Graphene-related materials are promising supports for electrocatalysts due to their stability and high surface area. Their innate surface chemistries can be controlled and tuned functionalisation to improve the stability of both the carbon support and the metal catalyst. Functionalised graphenes were prepared using either aryl diazonium functionalisation or non-destructive chemical reduction, to provide groups adapted for platinum deposition.

View Article and Find Full Text PDF

Diabetic patients have an increased risk of fracture and an increased occurrence of impaired fracture healing. Diabetic and hyperglycaemic conditions have been shown to impair the cellular response to hypoxia, via an inhibited hypoxia inducible factor (HIF)-1α pathway. We investigated, using an in vitro hyperglycaemia bone tissue engineering model (and a multidisciplinary bone characterisation approach), the differing effects of glucose levels, hypoxia and chemicals known to stabilise HIF-1α (CoCl and DMOG) on bone formation.

View Article and Find Full Text PDF

Studies of dense carbon materials formed by bolide impacts or produced by laboratory compression provide key information on the high-pressure behavior of carbon and for identifying and designing unique structures for technological applications. However, a major obstacle to studying and designing these materials is an incomplete understanding of their fundamental structures. Here, we report the remarkable structural diversity of cubic/hexagonally (/) stacked diamond and their association with diamond-graphite nanocomposites containing sp-/sp-bonding patterns, i.

View Article and Find Full Text PDF

Phosphorene nanoribbons (PNRs) have been widely predicted to exhibit a range of superlative functional properties; however, because they have only recently been isolated, these properties are yet to be shown to translate to improved performance in any application. PNRs show particular promise for optoelectronics, given their predicted high exciton binding energies, tunable bandgaps, and ultrahigh hole mobilities. Here, we verify the theorized enhanced hole mobility in both solar cells and space-charge-limited-current devices, demonstrating the potential for PNRs improving hole extraction in universal optoelectronic applications.

View Article and Find Full Text PDF

Ameloblastoma is a benign, epithelial cancer of the jawbone, which causes bone resorption and disfigurement to patients affected. The interaction of ameloblastoma with its tumour stroma drives invasion and progression. We used stiff collagen matrices to engineer active bone forming stroma, to probe the interaction of ameloblastoma with its native tumour bone microenvironment.

View Article and Find Full Text PDF

Polymer electrolyte fuel cells hold great promise for a range of applications but require advances in durability for widespread commercial uptake. Corrosion of the carbon support is one of the main degradation pathways; hence, corrosion-resilient graphene has been widely suggested as an alternative to traditional carbon black. However, the performance of bulk graphene-based electrodes is typically lower than that of commercial carbon black due to their stacking effects.

View Article and Find Full Text PDF

We present the discovery of a charge density wave (CDW) ground state in heavily electron-doped molybdenum disulfide (MoS). This is the first observation of a CDW in any (column 6) transition metal dichalcogenide (TMD). The band structure of MoS is distinct from the and TMDs in which CDWs have been previously observed, facilitating new insight into CDW formation.

View Article and Find Full Text PDF

The local and intermediate range ordering in Ca-NH solutions in their metallic phase is determined through H/D isotopically differenced neutron diffraction in combination with empirical potential structure refinements. For both low and high relative Ca concentrations, the Ca ions are found to be octahedrally coordinated by the NH solvent, and these hexammine units are spatially correlated out to lengthscales of ∼7.4-10.

View Article and Find Full Text PDF

Designing next-generation fuel cell and filtration devices requires the development of nanoporous materials that allow rapid and reversible uptake and directed transport of water molecules. Here, we combine neutron spectroscopy and first-principles calculations to demonstrate rapid transport of molecular HO through nanometer-sized voids ordered within the layers of crystalline carbon nitride with a polytriazine imide structure. The transport mechanism involves a sequence of molecular orientation reversals directed by hydrogen-bonding interactions as the neutral molecules traverse the interlayer gap and pass through the intralayer voids that show similarities with the transport of water through transmembrane aquaporin channels in biological systems.

View Article and Find Full Text PDF

Creating effective and stable catalyst nanoparticle-coated electrodes that can withstand extensive cycling is a current roadblock in realising the potential of polymer electrolyte membrane fuel cells. Graphene has been proposed as an ideal electrode support material due to its corrosion resistance, high surface area and high conductivity. However, to date, graphene-based electrodes suffer from high defect concentrations and non-uniform nanoparticle coverage that negatively affects performance; moreover, production methods are difficult to scale.

View Article and Find Full Text PDF

Alkalides, the alkali metals in their ?1 oxidation state, represent some of the largest and most polarizable atomic species in condensed phases. This study determines the solvation environment around the sodide anion, Na, in a system of co-solvated Li. We present isotopically varied total neutron scattering experiments alongside empirical potential structure refinement and ab initio molecular dynamics simulations for the alkali?alkalide system, LiNa?10MeNH.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionrimitrq4mfhevkuipeg77pb2vmoqsbuj): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once