Angiogenesis, a critical driver of tumor development, is controlled by interconnected signaling pathways. Vascular endothelial growth factor receptor (VEGFR) 2 and tyrosine kinase with immunoglobulin and epidermal growth factor homology domain 2 play crucial roles in the biology of normal and tumor vasculature. Regorafenib (BAY 73-4506), a novel oral multikinase inhibitor, potently inhibits these endothelial cell kinases in biochemical and cellular kinase phosphorylation assays.
View Article and Find Full Text PDFPurpose: New research findings have revealed a key role for vascular endothelial growth factor (VEGF) in the stimulation of angiogenesis in clear cell renal carcinoma (RCC) which is a highly vascularized and treatment-resistant tumor. Sorafenib (BAY 43-9006, Nexavar) is a multi-kinase inhibitor which targets receptor tyrosine and serine/threonine kinases involved in tumor progression and tumor angiogenesis. The effect of sorafenib on tumor growth and tumor histology was assessed in both ectopic and orthotopic mouse models of RCC.
View Article and Find Full Text PDFThis study was undertaken to characterize preclinical cytotoxic interactions for human malignancies between the multikinase inhibitor sorafenib (BAY 43-9006) and proteasome inhibitors bortezomib or MG132. Multiple tumor cell lines of varying histiotypes, including A549 (lung adenocarcinoma), 786-O (renal cell carcinoma), HeLa (cervical carcinoma), MDA-MB-231 (breast), K562 (chronic myelogenous leukemia), Jurkat (acute T-cell leukemia), MEC-2 (B-chronic lymphocytic leukemia), and U251 and D37 (glioma), as well as cells derived from primary human glioma tumors that are likely a more clinically relevant model were treated with sorafenib or bortezomib alone or in combination. Sorafenib and bortezomib synergistically induced a marked increase in mitochondrial injury and apoptosis, reflected by cytochrome c release, caspase-3 cleavage, and poly(ADP-ribose) polymerase degradation in a broad range of solid tumor and leukemia cell lines.
View Article and Find Full Text PDFPurpose: Sorafenib tosylate (sorafenib, BAY 43-9006, Nexavar) is a multi-kinase inhibitor that targets tumor cell proliferation and angiogenesis. These studies evaluated the efficacy and tolerability of combinations of sorafenib plus agents used to treat non-small cell lung cancer (NSCLC) using preclinical models of that disease.
Methods: Intravenous (iv) vinorelbine and interperitoneal (ip) cisplatin were administered intermittently (q4d x 3) in combination with sorafenib administered orally (po) once daily for 9 days starting on the same day as the standard agent.
BAY 43-9006, a multikinase inhibitor that targets Raf, prevents tumor cell proliferation in vitro and inhibits diverse human tumor xenografts in vivo. The mechanism of action of BAY 43-9006 remains incompletely defined. In the present study, the effects of BAY 43-9006 on the antiapoptotic Bcl-2 family member Mcl-1 were examined.
View Article and Find Full Text PDF