Publications by authors named "Christopher A Brosnan"

Nanoparticle-mediated delivery of nucleic acids and proteins into intact plants has the potential to modify metabolic pathways and confer desirable traits in crops. Here we show that layered double hydroxide (LDH) nanosheets coated with lysozyme are actively taken up into the root tip, root hairs and lateral root junctions by endocytosis, and translocate via an active membrane trafficking pathway in plants. Lysozyme coating enhanced nanosheet uptake by (1) loosening the plant cell wall and (2) stimulating the expression of endocytosis and other membrane trafficking genes.

View Article and Find Full Text PDF

The orthotospovirus capsicum chlorosis virus (CaCV) is an important pathogen affecting capsicum plants. Elevated temperatures may affect disease progression and pose a potential challenge to capsicum production. To date, CaCV-resistant capsicum breeding lines have been established; however, the impact of an elevated temperature of 35 °C on this genetic resistance remains unexplored.

View Article and Find Full Text PDF

Global food production is at risk from many abiotic and biotic stresses and can be affected by multiple stresses simultaneously. Virus diseases damage cultivated plants and decrease the marketable quality of produce. Importantly, the progression of virus diseases is strongly affected by changing climate conditions.

View Article and Find Full Text PDF

The ability to balance conflicting functional demands is critical for ensuring organismal survival. The transcription and repair of the mitochondrial genome (mtDNA) requires separate enzymatic activities that can sterically compete, suggesting a life-long trade-off between these two processes. Here in Caenorhabditis elegans, we find that the bZIP transcription factor ATFS-1/Atf5 (refs.

View Article and Find Full Text PDF

In RNA interference (RNAi), small interfering RNAs (siRNAs) produced from double-stranded RNA guide ARGONAUTE (AGO) proteins to silence sequence-complementary RNA/DNA. RNAi can propagate locally and systemically in plants, but despite recent advances in our understanding of the underlying mechanisms, basic questions remain unaddressed. For instance, RNAi is inferred to diffuse through plasmodesmata (PDs), yet how its dynamics in planta compares with that of established symplastic diffusion markers remains unknown.

View Article and Find Full Text PDF

RNA interference (RNAi) is a powerful tool that is being increasingly utilized for crop protection against viruses, fungal pathogens, and insect pests. The non-transgenic approach of spray-induced gene silencing (SIGS), which relies on spray application of double-stranded RNA (dsRNA) to induce RNAi, has come to prominence due to its safety and environmental benefits in addition to its wide host range and high target specificity. However, along with promising results in recent studies, several factors limiting SIGS RNAi efficiency have been recognized in insects and plants.

View Article and Find Full Text PDF

Whitefly (Bemisia tabaci) is a phloem-feeding global agricultural pest belonging to the order Hemiptera. Foliar application of double-stranded RNA (dsRNA) represents an attractive avenue for pest control; however, limited uptake and phloem availability of the dsRNA has restricted the development of RNA interference (RNAi)-based biopesticides against sap-sucking insects. Following high-throughput single and combinational target gene identification for additive effects, we report here that foliar application of dsRNA loaded onto layered double hydroxide (LDH), termed BioClay, can effectively disrupt multiple whitefly developmental stages in planta.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how a high-fat diet affects mitochondrial protein synthesis and lifespan in mutant mice with different mitochondrial ribosome qualities: error-prone (Mrps12) and hyper-accurate (Mrps12).
  • - Both mutations lower body weight and improve metabolic markers, but they produce different effects in the heart and liver, showcasing complex tissue-specific responses.
  • - Mrps12 mice are protected from heart issues but are prone to liver fat accumulation, while Mrps12 mice with high accuracy face severe heart problems and reduced lifespan despite liver benefits.
View Article and Find Full Text PDF

The DEFECTIVE EMBRYO AND MERISTEMS 1 (DEM1) gene encodes a protein of unknown biochemical function required for meristem formation and seedling development in tomato, but it was unclear whether DEM1's primary role was in cell division or alternatively, in defining the identity of meristematic cells. Genome sequence analysis indicates that flowering plants possess at least two DEM genes. Arabidopsis has two DEM genes, DEM1 and DEM2, which we show are expressed in developing embryos and meristems in a punctate pattern that is typical of genes involved in cell division.

View Article and Find Full Text PDF

Multicellularity has coincided with the evolution of microRNAs (miRNAs), small regulatory RNAs that are integrated into cellular differentiation and homeostatic gene-regulatory networks. However, the regulatory mechanisms underpinning miRNA activity have remained largely obscured because of the precise, and thus difficult to access, cellular contexts under which they operate. To resolve these, we have generated a genome-wide map of active miRNAs in Caenorhabditis elegans by revealing cell-type-specific patterns of miRNAs loaded into Argonaute (AGO) silencing complexes.

View Article and Find Full Text PDF

The nature of plant tissues has continuously hampered understanding of the spatio-temporal and subcellular distribution of RNA-guided processes. Here, we describe a universal protocol based on to investigate subcellular RNA distribution from virtually any plant species using flow cytometry sorting. This protocol includes all necessary control steps to assess the quality of the nuclear RNA purification.

View Article and Find Full Text PDF

In RNA interference (RNAi), the RNase III Dicer processes long double-stranded RNA (dsRNA) into short interfering RNA (siRNA), which, when loaded into ARGONAUTE (AGO) family proteins, execute gene silencing. Remarkably, RNAi can act non-cell autonomously: it is graft transmissible, and plasmodesmata-associated proteins modulate its cell-to-cell spread. Nonetheless, the molecular mechanisms involved remain ill defined, probably reflecting a disparity of experimental settings.

View Article and Find Full Text PDF

Loaded into ARGONAUTE(AGO) proteins, eukaryotic micro(mi)RNAs regulate gene expression via cleavage, translational repression, and/or accelerated decay of sequence-complementary target transcripts. Despite their importance in development, cell identity maintenance and stress responses, how individual miRNAs contribute to spatial gene regulation within the complex cell mosaics formed in tissues/organs has remained inaccessible in any organism to date. We have developed a non-invasive methodology to examine, at single-cell-type resolution, the AGO-loading and activity patterns of entire miRNA cohorts in intact organs, applied here to the Arabidopsis root tip.

View Article and Find Full Text PDF

In eukaryotes, the RNase-III Dicer often produces length/sequence microRNA (miRNA) variants, called "isomiRs", owing to intrinsic structural/sequence determinants of the miRNA precursors (pre-miRNAs). In this study, we combined biophysics, genetics and biochemistry approaches to study Arabidopsis miR168, the key feedback regulator of central plant silencing effector protein ARGONAUTE1 (AGO1). We identified a motif conserved among plant pre-miR168 orthologs, which enables flexible internal base-pairing underlying at least three metastable structural configurations.

View Article and Find Full Text PDF

Small RNAs play an important role in regulating gene expression through transcriptional and post-transcriptional gene silencing. Biogenesis of small RNAs from longer double-stranded (ds) RNA requires the activity of dicer-like ribonucleases (DCLs), which in plants are aided by dsRNA binding proteins (DRBs). To gain insight into this pathway in the model plant , we searched for interactors of DRB4 by immunoprecipitation followed by mass spectrometry-based fingerprinting and discovered DRB7.

View Article and Find Full Text PDF

In plants, once triggered within a single-cell type, transgene-mediated RNA-silencing can move from cell-to-cell and over long distances through the vasculature to alter gene expression in tissues remote form the primary sites of its initiation. Although, transgenic approaches have been instrumental to genetically decipher the components and channels required for mobile silencing, the possible existence and biological significance of comparable endogenous mobile silencing pathways has remained an open question. Here, we summarize the results from recent studies that shed light on the molecular nature of the nucleic acids involved and on existing endogenous mechanisms that allow long-distance gene regulation and epigenetic modifications.

View Article and Find Full Text PDF

Initiation of RNA polymerase II transcription signals the beginning of a series of physically and functionally coupled pre-mRNA processing events that transform an RNA transcript into a highly structured, mature ribonucleoprotein complex. With such a complexity of co-transcriptional processes comes the need to identify and degrade improperly processed transcripts. Quality control of mRNA expression primarily involves exonucleolytic degradation of aberrant RNAs.

View Article and Find Full Text PDF

Recent work on metazoans has uncovered the existence of an endogenous RNA-silencing pathway that functionally recapitulates the effects of experimental RNA interference (RNAi) used for gene knockdown in organisms such as Caenorhabditis elegans and Drosophila. The endogenous short interfering (si)RNA involved in this pathway are processed by Dicer-like nucleases from genomic loci re-arranged to form extended inverted repeats (IRs) that produce perfect or near-perfect dsRNA molecules. Although such IR loci are commonly detected in plant genomes, their genetics, evolution and potential contribution to plant biology through endogenous silencing have remained largely unexplored.

View Article and Find Full Text PDF

Controlling protein-coding gene expression can no longer be attributed purely to proteins involved in transcription, RNA processing, and translation. The role that noncoding RNAs (ncRNAs) play as potent and specific regulators of gene expression is now widely recognized in almost all species studied to date. Long ncRNAs can both upregulate and downregulate gene expression in both eukaryotes and prokaryotes and are essential in processes such as dosage compensation, genomic imprinting, developmental patterning and differentiation, and stress response.

View Article and Find Full Text PDF