Publications by authors named "Christopher A Achorn"

Cells have developed different mechanisms to respond to stress, including the formation of cytoplasmic foci known as stress granules (SGs). SGs are dynamic and formed as a result of stress-induced inhibition of translation. Despite enormous interest in SGs due to their contribution to the pathogenesis of several human diseases, many aspects of SG formation are poorly understood.

View Article and Find Full Text PDF

Mammalian stress granules (SGs) contain stalled translation preinitiation complexes that are assembled into discrete granules by specific RNA-binding proteins such as G3BP. We now show that cells lacking both G3BP1 and G3BP2 cannot form SGs in response to eukaryotic initiation factor 2α phosphorylation or eIF4A inhibition, but are still SG-competent when challenged with severe heat or osmotic stress. Rescue experiments using G3BP1 mutants show that phosphomimetic G3BP1-S149E fails to rescue SG formation, whereas G3BP1-F33W, a mutant unable to bind G3BP partner proteins Caprin1 or USP10, rescues SG formation.

View Article and Find Full Text PDF