The ab initio (ai) Gibbs ensemble (GE) Monte Carlo (MC) method coupled with Kohn-Sham density functional theory is successful in predicting the liquid-vapour equilibrium of insulating systems. Here we show that the aiGEMC method can be used to study also metallic systems, where the excited electronic states play an important role and cannot be neglected. For this we include the electronic free energy in the formulation of the effective energy of the system to be used in the acceptance criteria for the MC moves.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2005
We present a semianalytical free-energy model aimed at characterizing the thermodynamic properties of dense fluid helium, from the low-density atomic phase to the high-density fully ionized regime. The model is based on a free-energy minimization method and includes various different contributions representative of the correlations between atomic and ionic species and electrons. This model allows the computation of the thermodynamic properties of dense helium over an extended range of density and temperature and leads to the computation of the phase diagram of dense fluid helium, with its various temperature and pressure ionization contours.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2004
We derive a formulation to calculate the excess chemical potential of a fraction of N1 particles interacting with N2 particles of a different species. The excess chemical potential is calculated numerically from first principles by coupling molecular dynamics and Thomas-Fermi density functional theory to take into account the contribution arising from the quantum electrons on the forces acting on the ions. The choice of this simple functional is motivated by the fact that the present paper is devoted to the derivation and the validation of the method but more complicated functionals can and will be implemented in the future.
View Article and Find Full Text PDF