A. baumannii can rapidly acquire new resistance mechanisms and persist on abiotic surface, enabling the colonization of asymptomatic human host. In Acinetobacter the type VI secretion system (T6SS) is involved in twitching, surface motility and is used for interbacterial competition allowing the bacteria to uptake DNA.
View Article and Find Full Text PDFConventional type 1 dendritic cells (cDC1s) are critical for antitumor immunity. They acquire antigens from dying tumor cells and cross-present them to CD8 T cells, promoting the expansion of tumor-specific cytotoxic T cells. However, the signaling pathways that govern the antitumor functions of cDC1s in immunogenic tumors are poorly understood.
View Article and Find Full Text PDFMacrophages possess intrinsic tumoricidal activity, yet tumor-associated macrophages (TAMs) rapidly adopt an alternative phenotype within the tumor microenvironment that is marked by tumor-promoting immunosuppressive and trophic functions. The mechanisms that promote such TAM polarization remain poorly understood, but once identified, they may represent important therapeutic targets to block the tumor-promoting functions of TAMs and restore their anti-tumor potential. Here, we have characterized TAMs in a mouse model of metastatic ovarian cancer.
View Article and Find Full Text PDFThe spleen plays an important role in protective immunity to bloodborne pathogens. Macrophages and dendritic cells (DCs) in the spleen marginal zone capture microbial antigens to trigger adaptive immune responses. Marginal zone macrophages (MZMs) can also act as a replicative niche for intracellular pathogens, providing a platform for mounting the immune response.
View Article and Find Full Text PDFMigratory non-lymphoid tissue dendritic cells (NLT-DCs) transport antigens to lymph nodes (LNs) and are required for protective immune responses in the context of inflammation and to promote tolerance to self-antigens in steady-state. However, the molecular mechanisms that elicit steady-state NLT-DC maturation and migration are unknown. By comparing the transcriptome of NLT-DCs in the skin with their migratory counterparts in draining LNs, we have identified a novel NF-κB-regulated gene network specific to migratory DCs.
View Article and Find Full Text PDFThe TCRbeta gene enhancer (Ebeta) commands TCRbeta gene expression through the lifespan of T lymphocytes. Genetic and molecular studies have implied that in early thymocytes, Ebeta directs chromatin opening over the Dbeta-Jbeta-Cbeta domains and triggers initial Dbeta-Jbeta recombination. In mature T cells, Ebeta is required for expression of the assembled TCRbeta gene.
View Article and Find Full Text PDFBackground: The INK4/ARF locus encodes three tumor suppressor genes (p15(Ink4b), Arf and p16(Ink4a)) and is frequently inactivated in a large number of human cancers. Mechanisms regulating INK4/ARF expression are not fully characterized.
Principal Findings: Here we show that in young proliferating embryonic fibroblasts (MEFs) the Polycomb Repressive Complex 2 (PRC2) member EZH2 together with PRC1 members BMI1 and M33 are strongly expressed and localized at the INK4/ARF regulatory domain (RD) identified as a DNA replication origin.
Actin polymerization plays a critical role in activated T lymphocytes both in regulating T cell receptor (TCR)-induced immunological synapse (IS) formation and signaling. Using gene targeting, we demonstrate that the hematopoietic specific, actin- and Arp2/3 complex-binding protein coronin-1A contributes to both processes. Coronin-1A-deficient mice specifically showed alterations in terminal development and the survival of alpha beta T cells, together with defects in cell activation and cytokine production following TCR triggering.
View Article and Find Full Text PDFThe Notch signaling pathway controls several cell fate decisions during lymphocyte development, from T-cell lineage commitment to the peripheral differentiation of B and T lymphocytes. Deltex-1 is a RING finger ubiquitin ligase which is conserved from Drosophila to humans and has been proposed to be a regulator of Notch signaling. Its pattern of lymphoid expression as well as gain-of-function experiments suggest that Deltex-1 regulates both B-cell lineage and splenic marginal-zone B-cell commitment.
View Article and Find Full Text PDFCoronin has been described as an actin-binding protein of Dictyostelium discoideum, and it has been demonstrated to play a role in cell migration, cytokinesis and phagocytosis. Coronin-related proteins are found in many eukaryotic species, including Coronin-1 in mammals whose expression is enriched in the hematopoietic tissues. Here, we characterize Coronin-1 gene and protein expression in mouse embryonic and adult T lymphocytes.
View Article and Find Full Text PDFV(D)J recombination and expression of the T-cell receptor beta (TCRbeta) gene are required for the development of the alphabeta T lymphocyte lineage. These processes depend on a transcriptional enhancer (Ebeta) which acts preferentially on adjacent upstream sequences, and has little impact on the 5' distal and 3' proximal regions of the TCRbeta locus. Using knock-in mice, we show that alphabeta T-cell differentiation and TCRbeta gene recombination and expression are not sensitive to the orientation of Ebeta sequences.
View Article and Find Full Text PDFTo assess the role of the T cell receptor (TCR) beta gene enhancer (Ebeta) in regulating the processing of VDJ recombinase-generated coding ends, we assayed TCRbeta rearrangement of Ebeta-deleted (DeltaEbeta) thymocytes in which cell death is inhibited via expression of a Bcl-2 transgene. Compared with DeltaEbeta, DeltaEbeta Bcl-2 thymocytes show a small accumulation of TCRbeta standard recombination products, including coding ends, that involves the proximal Dbeta-Jbeta and Vbeta14 loci but not the distal 5' Vbeta genes. These effects are detectable in double negative pro-T cells, predominate in double positive pre-T cells, and correlate with regional changes in chromosomal structure during double negative-to-double positive differentiation.
View Article and Find Full Text PDFThe WD-repeat protein family consists of a large group of structurally related yet functionally diverse proteins found predominantly in eukaryotic cells. These factors contain several (4-16) copies of a recognizable amino-acid sequence motif (the WD unit) thought to be organized into a "propeller-like" structure involved in protein-protein regulatory interactions. Here, we report the cloning of a mouse cDNA, referred to as Wdr12, which encodes a novel WD-repeat protein of 423 amino acids.
View Article and Find Full Text PDF