Publications by authors named "Christophe Pirat"

We reveal a physical mechanism that enables the preconcentration, sorting, and characterization of charged polystyrene nanobeads and liposomes dispersed in a continuous flow within a straight micron-sized channel. Initially, a single Ψ-junction microfluidic chip is used to generate a steady-state salt concentration gradient in the direction perpendicular to the flow. As a result, fluorescent nanobeads dispersed in the electrolyte solutions accumulate into symmetric regions of the channel, appearing as two distinct symmetric stripes when the channel is observed from the top via epi-fluorescence microscopy.

View Article and Find Full Text PDF

The delivery of colloidal particles in dead-end microstructures is very challenging, since these geometries do not allow net flows of particle-laden fluids; meanwhile, diffusive transport is slow and inefficient. Recently, we introduced a novel particle manipulation strategy, based on diffusiophoresis, whereby the salt concentration gradient between parallel electrolyte streams in a microgrooved channel induces the rapid (i.e.

View Article and Find Full Text PDF

The controlled transport of colloids in dead-end structures is a key capability that can enable a wide range of applications, such as biochemical analysis, drug delivery, and underground oil recovery. This Letter presents a new trapping mechanism that allows the fast (i.e.

View Article and Find Full Text PDF

We report on the observation of thin salt shells that form at the periphery of evaporating pure water drops on salt. Shell shapes range from rings of inclined walls to hollow toroidal rims. We interpret this phenomenon as a consequence of a molecular coffee-stain effect by which the dissolved salt is advected toward the pinned contact line where an increased evaporation takes place.

View Article and Find Full Text PDF

We report on experiments of drop evaporation on heated superhydrophobic surfaces decorated with micrometer-sized mushroom-like pillars. We analyze the influence of two parameters on the evaporation dynamics: the solid-liquid fraction and the substrate temperature, ranging between 30 and 80 °C. In the different configurations investigated, the drop evaporation appears to be controlled by the contact line dynamics (pinned or moving).

View Article and Find Full Text PDF

Despite the fact that superhydrophobic surfaces possess useful and unique properties, their practical application has remained limited by durability issues. Among those, the wetting transition, whereby a surface gets impregnated by the liquid and permanently loses its superhydrophobicity, certainly constitutes the most limiting aspect under many realistic conditions. In this study, we revisit this so-called Cassie-to-Wenzel transition (CWT) under the broadly encountered situation of liquid drop impact.

View Article and Find Full Text PDF

In the context of sonoporation, we use supported lipid bilayers as a model for biological membranes and investigate the interactions between the bilayer and microbubbles induced by ultrasound. Among the various types of damage caused by bubbles on the surface, our experiments exhibit a singular dynamic interaction process where bubbles are jumping on the bilayer, forming a necklace pattern of alteration on the membrane. This phenomenon was explored with different time and space resolutions and, based on our observations, we propose a model for a microbubble subjected to the combined action of van der Waals, acoustic and hydrodynamic forces.

View Article and Find Full Text PDF

The objective of this study was to address the following question: 'Which properties are modified in partially demineralized surfaces, compared with non-demineralized dentin surfaces, following orthophosphoric acid-etching as performed in clinical procedures?'. For this purpose, the complementary techniques atomic force microscopy/spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and contact angle measurements were used to provide a multiscale characterization of the dentin substrate undergoing the acidic preconditioning designed to enhance wetting. Special attention was given to the influence of the etching pretreatment on the nanomechanical properties at different levels of dentin surfaces, in both dry and hydrated conditions.

View Article and Find Full Text PDF

A drop of moderate size deposited inside a circular hydraulic jump remains trapped at the shock front and does not coalesce with the liquid flowing across the jump. For a small inclination of the plate on which the liquid is impacting, the drop does not always stay at the lowest position and oscillates around it with a sometimes large amplitude, and a frequency that slightly decreases with flow rate. We suggest that this striking behavior is linked to a gyroscopic instability in which the drop tries to keep constant its angular momentum while sliding along the jump.

View Article and Find Full Text PDF

We experimentally investigate drop impact dynamics onto different superhydrophobic surfaces, consisting of regular polymeric micropatterns and rough carbon nanofibers, with similar static contact angles. The main control parameters are the Weber number We and the roughness of the surface. At small We, i.

View Article and Find Full Text PDF

In some cases water droplets can completely wet microstructured superhydrophobic surfaces. The dynamics of this rapid process is analyzed by ultrahigh-speed imaging. Depending on the scales of the microstructure, the wetting fronts propagate smoothly and circularly or-more interestingly-in a stepwise manner, leading to a growing square-shaped wetted area: entering a new row perpendicular to the direction of front propagation takes milliseconds, whereas once this has happened, the row itself fills in microseconds ("zipping").

View Article and Find Full Text PDF

In this Letter, we study experimentally a viscous liquid curtain in an annular geometry. Gap and median radius can be varied in such a way that the base of the initially stationary cylindrical curtain is led to oscillate by decreasing the flow rate. Standing and traveling waves in the plane of the annulus are observed and a nontrivial expression linking pulsation to flow rate per surface unit and viscosity can be defined.

View Article and Find Full Text PDF

We study the transition to spatiotemporal chaos in a two-dimensional hydrodynamic experiment where liquid columns take place in the gravity induced instability of a liquid film. The film is formed below a plane grid which is used as a porous media and is continuously supplied with a controlled flow rate. This system can be either ordered (on a hexagonal structure) or disordered depending on the flow rate.

View Article and Find Full Text PDF