Publications by authors named "Christophe Pichavant"

We delivered plasmid DNA encoding therapeutic genes to the muscles of mouse models of limb girdle muscular dystrophy (LGMD) 2A, 2B, and 2D, deficient in calpain3, dysferlin, and alpha-sarcoglycan, respectively. We also delivered the human follistatin gene, which has the potential to increase therapeutic benefit. After intramuscular injection of DNA, electroporation was applied to enhance delivery to muscle fibers.

View Article and Find Full Text PDF

Mutations in the gene for dysferlin cause a degenerative disorder of skeletal muscle known as limb girdle muscular dystrophy 2B. To achieve gene delivery of plasmids encoding dysferlin to hind limb muscles of dysferlin knockout mice, we used a vascular injection method that perfused naked plasmid DNA into all major muscle groups of the hind limb. We monitored delivery by luciferase live imaging and western blot, confirming strong dysferlin expression that persisted over the 3-month time course of the experiment.

View Article and Find Full Text PDF

Background: Abnormal branched myofibers within skeletal muscles are commonly found in diverse animal models of muscular dystrophy as well as in patients. Branched myofibers from dystrophic mice are more susceptible to break than unbranched myofibers suggesting that muscles containing a high percentage of these myofibers are more prone to injury. Previous studies showed ubiquitous over-expression of mouse olfactory receptor 23 (mOR23), a G protein-coupled receptor, in wild type mice decreased myofiber branching.

View Article and Find Full Text PDF

Myoblast fusion is critical for proper muscle growth and regeneration. During myoblast fusion, the localization of some molecules is spatially restricted; however, the exact reason for such localization is unknown. Creatine kinase B (CKB), which replenishes local ATP pools, localizes near the ends of cultured primary mouse myotubes.

View Article and Find Full Text PDF

Background: Myofibers with an abnormal branching cytoarchitecture are commonly found in muscular dystrophy and in regenerated or aged nondystrophic muscles. Such branched myofibers from dystrophic mice are more susceptible to damage than unbranched myofibers in vitro, suggesting that muscles containing a high percentage of these myofibers are more prone to injury. Little is known about the regulation of myofiber branching.

View Article and Find Full Text PDF

Gene therapy is a promising approach for the treatment of a variety of disorders including genetic diseases and cancer. Among the viral vectors used in gene therapy, the lentiviral vector, based on HIV-1, is the only integrative vector able to transduce nondividing cells. The first generation of lentiviral vector was -established in 1996.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is characterized by the absence of dystrophin in muscles. A therapeutic approach to restore dystrophin expression in DMD patient's muscles is the transplantation of muscle precursor cells (MPCs). However, this transplantation is limited by the low MPC capacity to migrate beyond the injection trajectory.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a genetic disease affecting about one in every 3,500 boys. This X-linked pathology is due to the absence of dystrophin in muscle fibers. This lack of dystrophin leads to the progressive muscle degeneration that is often responsible for the death of the DMD patients during the third decade of their life.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is an X-linked genetic disease characterized by the absence of dystrophin (427 kDa). An approach to eventually restore this protein in patients with DMD is to introduce into their muscles a plasmid encoding dystrophin cDNA. Because the phenotype of the dystrophic dog is closer to the human phenotype than is the mdx mouse phenotype, we have studied the electrotransfer of a plasmid carrying the full-length dog dystrophin (FLDYS(dog)) in dystrophic dog muscle.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is characterized by the absence of dystrophin. Several previous studies demonstrated the feasibility of delivering microdystrophin complementary DNA (cDNA) into mouse and normal nonhuman primate muscles by ex vivo gene therapy. However, these animal models do not reproduce completely the human DMD phenotype, while the dystrophic dog model does.

View Article and Find Full Text PDF

A mixed-chimerism approach is a major goal to circumvent sustained immunosuppression, but most of the proposed protocols need antibody treatment or host irradiation. Another promising experience involves busulfan combined with cyclophosphamide treatment. Additionally, recent publications demonstrated that, differing from busulfan, treosulfan administration does not present severe organ or hemato toxicities.

View Article and Find Full Text PDF