Publications by authors named "Christophe Pakleza"

UV irradiation at 254 nm of 2'-O,5-dimethyluridylyl(3'-5')-2'-O,5-dimethyluridine (1a) and of natural thymidylyl(3'-5')thymidine (1b) generates the same photoproducts (CPD and (6-4)PP; responsible for cell death and skin cancer). The ratios of quantum yields of photoproducts obtained from 1a (determined herein) to that from 1b are in a proportion close to the approximately threefold increase of stacked dinucleotides for 1a compared with those of 1b (from previous circular dichroism results). 1a and 1b however are endowed with different predominant sugar conformations, C3'-endo (1a) and C2'-endo (1b).

View Article and Find Full Text PDF

The biopolymer chain elasticity (BCE) approach and the new molecular modelling methodology presented previously are used to predict the tri- dimensional backbones of DNA and RNA hairpin loops. The structures of eight remarkably stable DNA or RNA hairpin molecules closed by a mispair, recently determined in solution by NMR and deposited in the PDB, are shown to verify the predicted trajectories by an analysis automated for large numbers of PDB conformations. They encompass: one DNA tetraloop, -GTTA-; three DNA triloops, -AAA- or -GCA-; and four RNA tetraloops, -UUCG-.

View Article and Find Full Text PDF

A new molecular modelling methodology is presented and shown to apply to all published solution structures of DNA hairpins with TTT in the loop. It is based on the theory of elasticity of thin rods and on the assumption that single-stranded B-DNA behaves as a continuous, unshearable, unstretchable and flexible thin rod. It requires four construction steps: (i) computation of the tri-dimensional trajectory of the elastic line, (ii) global deformation of single-stranded helical DNA onto the elastic line, (iii) optimisation of the nucleoside rotations about the elastic line, (iv) energy minimisation to restore backbone bond lengths and bond angles.

View Article and Find Full Text PDF