Publications by authors named "Christophe Maurel"

The water uptake capacity of a root system is determined by its architecture and hydraulic properties, which together shape the root hydraulic architecture. Here, we investigated root responses to water deficit (WD) in seedlings of a maize (Zea mays) hybrid line (B73H) grown in hydroponic conditions, taking into account the primary root (PR), the seminal roots (SR), and their respective lateral roots. WD was induced by various polyethylene glycol concentrations and resulted in dose-dependent inhibitions of axial and lateral root growth, lateral root formation, and hydraulic conductivity (Lpr), with slightly distinct sensitivities to WD between PR and SR.

View Article and Find Full Text PDF

Soil water uptake by roots is a key component of plant water homeostasis contributing to plant growth and survival under ever-changing environmental conditions. The water transport capacity of roots (root hydraulic conductivity; Lp ) is mostly contributed by finely regulated Plasma membrane Intrinsic Protein (PIP) aquaporins. In this study, we used natural variation of Arabidopsis for the identification of quantitative trait loci (QTLs) contributing to Lp .

View Article and Find Full Text PDF

Plants face a constantly changing environment, requiring fine tuning of their growth and development. Plants have therefore developed numerous mechanisms to cope with environmental stress conditions. One striking example is root response to water deficit.

View Article and Find Full Text PDF

In a context of climate change, deciphering signaling pathways driving plant adaptation to drought, changes in water availability, and salt is key. A crossing point of these plant stresses is their impact on plant water potential (Ψ), a composite physico-chemical variable reflecting the availability of water for biological processes such as plant growth and stomatal aperture. The Ψ of plant cells is mainly driven by their turgor and osmotic pressures.

View Article and Find Full Text PDF

Plant water uptake is determined by the root system architecture and its hydraulic capacity, which together define the root hydraulic architecture. The current research aims at understanding the water uptake capacities of maize (Zea mays), a model organism and major crop. We explored the genetic variations within a collection of 224 maize inbred Dent lines and successively defined core genotype subsets to access multiple architectural, anatomical, and hydraulic parameters in the primary root (PR) and seminal roots (SR) of hydroponically grown seedlings.

View Article and Find Full Text PDF

Cells maintain a constant dialog between the extracellular matrix and their plasma membrane to fine tune signal transduction processes. We found that the receptor kinase FERONIA (FER), which is a proposed cell wall sensor, modulates phosphatidylserine plasma membrane accumulation and nano-organization, a key regulator of Rho GTPase signaling in Arabidopsis. We demonstrate that FER is required for both Rho-of-Plant 6 (ROP6) nano-partitioning at the membrane and downstream production of reactive oxygen species upon hyperosmotic stimulus.

View Article and Find Full Text PDF

Root water uptake is driven by a combination of hydrostatic and osmotic forces. Water transport was characterized in primary roots of maize seedlings grown hydroponically under standard and water deficit (WD) conditions, as induced by addition of 150 g l-1 polyethylene glycol 8000 (water potential= -0.336 MPa).

View Article and Find Full Text PDF

Background: Root water transport, which critically contributes to the plant water status and thereby plant productivity, has been the object of extensive experimental and theoretical studies. However, root systems represent an intricate assembly of cells in complex architectures, including many tissues at distinct developmental stages. Our comprehension of where and how molecular actors integrate their function in order to provide the root with its hydraulic properties is therefore still limited.

View Article and Find Full Text PDF

Water uptake by roots is a key adaptation of plants to aerial life. Water uptake depends on root system architecture (RSA) and tissue hydraulic properties that, together, shape the root hydraulic architecture. This work investigates how the interplay between conductivities along radial (e.

View Article and Find Full Text PDF

Plant water transport and its molecular components including aquaporins are responsive, across diverse time scales, to an extremely wide array of environmental and hormonal signals. These include water deficit and abscisic acid (ABA) but also more recently identified stimuli such as peptide hormones or bacterial elicitors. The present review makes an inventory of corresponding signalling pathways.

View Article and Find Full Text PDF

The formation of Casparian strips (CS) and the deposition of suberin at the endodermis of plant roots are thought to limit the apoplastic transport of water and ions. We investigated the specific role of each of these apoplastic barriers in the control of hydro-mineral transport by roots and the consequences on shoot growth. A collection of Arabidopsis thaliana mutants defective in suberin deposition and/or CS development was characterized under standard conditions using a hydroponic system and the Phenopsis platform.

View Article and Find Full Text PDF

A key impediment to studying water-related mechanisms in plants is the inability to non-invasively image water fluxes in cells at high temporal and spatial resolution. Here, we report that Raman microspectroscopy, complemented by hydrodynamic modelling, can achieve this goal - monitoring hydrodynamics within living root tissues at cell- and sub-second-scale resolutions. Raman imaging of water-transporting xylem vessels in Arabidopsis thaliana mutant roots reveals faster xylem water transport in endodermal diffusion barrier mutants.

View Article and Find Full Text PDF

In the course of their growth and development, plants have to constantly perceive and react to their environment. This is achieved in cells by the coordination of complex combinatorial signaling networks. However, how signal integration and specificity are achieved in this context is unknown.

View Article and Find Full Text PDF

Because of intense transpiration and growth, the needs of plants for water can be immense. Yet water in the soil is most often heterogeneous if not scarce due to more and more frequent and intense drought episodes. The converse context, flooding, is often associated with marked oxygen deficiency and can also challenge the plant water status.

View Article and Find Full Text PDF

Root water uptake is influenced by root system architecture, which is determined by root growth and branching and the hydraulics of root cells and tissues. The phytohormone abscisic acid (ABA) plays a major role in the adaptation of plants to water deficit (WD). Here we addressed at the whole-root level in Arabidopsis () the regulatory role of ABA in mechanisms that determine root hydraulic architecture.

View Article and Find Full Text PDF

The endodermis is a key cell layer in plant roots that contributes to the controlled uptake of water and mineral nutrients into plants. In order to provide such functionality the endodermal cell wall has specific chemical modifications consisting of lignin bands (Casparian strips) that encircle each cell, and deposition of a waxy-like substance (suberin) between the wall and the plasma membrane. These two extracellular deposits provide control of diffusion enabling the endodermis to direct the movement of water and solutes into and out of the vascular system in roots.

View Article and Find Full Text PDF

The absorption of soil water by roots allows plants to maintain their water status. At the endodermis, water transport can be affected by initial formation of a Casparian strip and further deposition of suberin lamellas and regulated by the function of aquaporins. Four Casparian strip membrane domain protein-like (CASPL; CASPL1B1, CASPL1B2, CASPL1D1, and CASPL1D2) were previously shown to interact with PIP2;1.

View Article and Find Full Text PDF

Physiological acclimation of plants to an everchanging environment is governed by complex combinatorial signaling networks that perceive and transduce various abiotic and biotic stimuli. Reactive oxygen species (ROS) serve as one of the second messengers in plant responses to hyperosmotic stress. The molecular bases of ROS production and the primary cellular processes that they target were investigated in the Arabidopsis () root.

View Article and Find Full Text PDF

The circadian clock regulates plant tissue hydraulics to synchronize water supply with environmental cycles and thereby optimize growth. The circadian fluctuations in aquaporin transcript abundance suggest that aquaporin water channels play a role in these processes. Here, we show that hydraulic conductivity ( ) of Arabidopsis () rosettes displays a genuine circadian rhythmicity with a peak around midday.

View Article and Find Full Text PDF

Soil water uptake by roots is a key component of plant performance and adaptation to adverse environments. Here, we use a genome-wide association analysis to identify the XYLEM NAC DOMAIN 1 (XND1) transcription factor as a negative regulator of Arabidopsis root hydraulic conductivity (Lp). The distinct functionalities of a series of natural XND1 variants and a single nucleotide polymorphism that determines XND1 translation efficiency demonstrate the significance of XND1 natural variation at species-wide level.

View Article and Find Full Text PDF

Background: Cell biology approach using membrane protein markers tagged with fluorescent proteins highlights the dynamic behaviour of plant cell membranes, not only in the standard but also in changing environmental conditions. In the past, this strategy has been extensively developed in plant models such as Arabidopsis.

Results: Here, we generated a set of transgenic lines expressing membrane protein markers to extend this approach to rice, one of the most cultivated crop in the world and an emerging plant model.

View Article and Find Full Text PDF

The climate warming implies an increase of stress of plants (drought and torrential rainfall). The understanding of plant behavior, in this context, takes a major importance and sap flow measurement in plants remains a key issue for plant understanding. Magnetic Resonance Imaging (MRI) which is well known to be a powerful tool to access water quantity can be used to measure moving water.

View Article and Find Full Text PDF

Stomatal movements are crucial for the control of plant water status and protection against pathogens. Assays on epidermal peels revealed that, similar to abscisic acid (ABA), pathogen-associated molecular pattern (PAMP) flg22 requires the PIP2;1 aquaporin to induce stomatal closure. Flg22 also induced an increase in osmotic water permeability () of guard cell protoplasts through activation of PIP2;1.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionn9jns1ill8f73d5mlmkqvt3cjdejv1oi): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once