Various series of 4,6-disubstituted-2-thiopyridine derivatives were synthesized and evaluated as potential ecto-5'-nucleotidase (CD73) inhibitors. Altogether, about ninety compounds were prepared using a general synthetic pathway involving one or two steps (eventually one-pot) procedures. Variation of the nature of the substituents in positions 4 and 6 (methyl, trifluoromethyl or phenyl) of the thiopurine ring, as well as on the thiol function, was examined and led to marked differences both in term of reactivity and ability to interfere with the putative target protein.
View Article and Find Full Text PDFSynthetic nucleoside mimics are re-emerging as crucial contenders for antiviral and anticancer medications. While, Ribavirin stands out for its unique antiviral properties, predominantly associated with its distinctive triazole heterocycle as a nucleobase, the exploration of alternative nitrogen-based aromatic heterocycles hold great promises for the discovery of novel bioactive nucleoside mimics. Although nucleoside derivatives synthesized from hydrazine-ribose units have been in development for many decades, they have been little evaluated biologically and even less for their antiviral properties.
View Article and Find Full Text PDFThe nucleotidase ISN1 is a potential therapeutic target of the purine salvage pathway of the malaria parasite Plasmodium falciparum. We identified PfISN1 ligands by in silico screening of a small library of nucleos(t)ide analogues and by thermal shift assays. Starting from a racemic cyclopentyl carbocyclic phosphonate scaffold, we explored the diversity on the nucleobase moiety and also proposed a convenient synthetic pathway to access the pure enantiomers of our initial hit (compound (±)-2).
View Article and Find Full Text PDFVarious series of 4,6-biaryl-2-thiopyridine derivatives were synthesized and evaluated as potential ecto-5'-nucleotidase (CD73) inhibitors. Two synthetic routes were explored and the coupling of 4,6-disubstituted 3-cyano-2-chloro-pyridines with selected thiols allowed us to explore the structural diversity. Somehow divergent results were obtained in biological assays on CD73 inhibition using either the purified recombinant protein or cell-based assays, highlighting the difficulty to target protein-protein interface on proteins existing as soluble and membrane-bound forms.
View Article and Find Full Text PDFRecently, we reported the racemic synthesis of 3'-fluoro-5'-norcarbocyclic nucleoside phosphonates bearing adenine as the heterocyclic base. For this study, to evaluate the antiviral activity of each enantiomer, we synthesized both enantiomers, as well as their corresponding bis(POM) prodrugs. Anti-HIV-1 evaluation against the LAI strain and clinically NRTI-resistant HIV-1 strains are presented.
View Article and Find Full Text PDFThree series of nucleotide analogues were synthesized and evaluated as potential CD73 inhibitors. Nucleobase replacement consisted in connecting the appropriate aromatic or purine residues through a triazole moiety that is generated from 1,3-dipolar cycloaddition. The first series is related to 4-substituted-1,2,3-triazolo-β-hydroxyphosphonate ribonucleosides.
View Article and Find Full Text PDF3-Acetoacetyl-4,6-diaryl-2-pyridones are synthesized in three steps from chalcones and then condense with carbon disulfide to afford 8-azachromones containing a methylthio group at C2. This leaving group offers an entry point for the insertion of more complex moieties via nucleophilic substitution. For this purpose, N-nucleophiles are explored according to their positions in the Mayr's nucleophilicity scale ( parameter), and three main classes are distinguished depending on whether the substitution takes place from their neutral forms, from their deprotonated anionic forms, or under nucleophilic catalysis.
View Article and Find Full Text PDFCarbocyclic nucleoside analogues are an essential class of antiviral agents and are commonly used in the treatment of viral diseases (hepatitis B, AIDS). Recently, we reported the racemic synthesis and the anti-human immunodeficiency virus activities (HIV) of 3'-fluoro-5'-norcarbocyclic nucleoside phosphonates bearing purines as heterocyclic base. Based on these results, the corresponding racemic norcarbocyclic nucleoside phosphonates bearing pyrimidine bases were synthesized.
View Article and Find Full Text PDFDerivatives of 5'-aminoadenosine containing methyl carboxylate, methyl phosphonate, gem-bisphosphonate, bis(methylphosphonate), and α-carboxylmethylphosphonate or phosphonoacetate moieties were synthesized from key intermediate 5'-aminonucleoside. These nucleotide analogues were envisaged as 5'-mono- or diphosphate nucleoside mimics. All compounds were evaluated for CD73 inhibition in a cell-based assay (MDA-MB-231) and toward the purified recombinant protein.
View Article and Find Full Text PDFThe synthesis and anti-HIV evaluation of hitherto unknown 3'-fluoro-5'-norcarbocyclic nucleoside phosphonates bearing adenine with modifications at the 4' position (ethynyl, vinyl, ethyl, hydroxymethyl) is described. One of the synthesized compounds was found to be an inhibitor of HIV-1 replication, but with moderate efficiency relative to (R)-9-(2-phosphonylmethoxypropyl)adenine ((R)-PMPA, tenofovir), with no concomitant cytotoxicity.
View Article and Find Full Text PDFThe synthesis and the antiviral evaluation of 3'-halo (iodo and fluoro) 5'-norcarbocyclic nucleoside phosphonates is described. No antiviral activity was observed against Zika virus, Dengue virus 2, HSV-1, HSV-2 and Chikungunya virus. In contrast, some of the synthesized compounds are potent inhibitors of the replication of HIV-1, comparatively to (R)-PMPA, with no concomitant cytotoxicity.
View Article and Find Full Text PDFWe report here the synthetic route of two constrained dinucleotides and the determination of the sugar puckering by NMR analyses of the starting nucleosides. Enzymatic ligation to microhelix-RNAs provide access to tRNA analogues containing a 3' terminal A locked in South conformation. Biological evaluation of our tRNA analogues has been performed using amino-acyl tRNA-dependent transferase FemX, which mediates non-ribosomal incorporation of amino acids into the bacterial cell wall.
View Article and Find Full Text PDFThe racemic synthesis of new carbocyclic nucleoside methylphosphonate analogues bearing purine bases (adenine and guanine) was accomplished using bio-sourced furfuryl alcohol derivatives. All compounds were prepared using a Mitsunobu coupling between the heterocyclic base and an appropriate carbocyclic precursor. After deprotection, the compounds were evaluated for their activity against a large number of viruses.
View Article and Find Full Text PDFAMP mimics constitute an important class of therapeutic derivatives to treat diseases where the pool of ATP is involved. A new phosphonate derivative of 9-(5-hydroxymethylfuran-2-yl)adenine was synthesized in a multi-step sequence from commercially available adenosine. Its ability to behave as a substrate of human adenylate kinases 1 and 2 was assessed.
View Article and Find Full Text PDFAn amine group was synthesized starting from an optically active bicyclo[2.2.1]heptane compound, which was then used to build the 5 atoms ring of a key 6-chloropurine intermediate.
View Article and Find Full Text PDFA rapid synthesis of 2',3'-dideoxy-3'-fluoro-β-D-threo-nucleosides bearing the pyrimidine canonical bases of nucleic acids has been developed in order to discover new nucleoside derivatives as potential antiviral drugs. However, when evaluated for their antiviral activity in cell culture experiments, none of these compounds showed any significant antiviral activity.
View Article and Find Full Text PDF(-)-Neplanocin B, the natural isomer of a component of the neplanocin family was diasteroselectively synthesized from 2,3-O-isopropylidene-D-1,4-ribonolactone. However, when evaluated against several DNA and RNA viruses in cell culture experiments, it did not show any antiviral activity.
View Article and Find Full Text PDFNucleic Acids Symp Ser (Oxf)
November 2010
Attempts for the synthesis of 2'-deoxy-2'-fluoro nucleoside derivative of 3'-C-methyluridine were reported. The corresponding parent nucleoside was chosen as the starting material. However, the 2'-deoxy-2'-fluoro nucleoside was not obtained.
View Article and Find Full Text PDF(-)-Neplanocin B, the natural isomer of a component of the neplanocin family was enantioselectively synthesized.
View Article and Find Full Text PDF2',3'-Dideoxy-3'-C-methyl nucleosides bearing the five naturally occurring nucleic acid bases were synthesized. Additionally, the 3'-deoxy-3'-C-methyl nucleoside analogues bearing 5-aminoimidazole-4-carboxamide as well as 1,2,4-triazole-3-carboxamide moieties were prepared. The synthesis of the corresponding 2',3'-dideoxy-3'-C-methyl triazole derivative was also accomplished.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
March 2008
The synthesis of some 3'-deoxy-3'-C-methylnucleoside analogues bearing naturally occuring nucleic acid bases was achieved from the preparation of a suitable peracylated 3-deoxy-3-C-methyl sugar using a stereoselective pathway. In addition, examples of chemical modifications at the 2' position are presented.
View Article and Find Full Text PDFThe stereospecific synthesis of (-)-neplanocin F was achieved in 15 steps from 2,3-O-isopropylidene-D-1,4-ribonolactone. The synthetic methodology can give an access through appropriate modifications to new series of carbanucleosides.
View Article and Find Full Text PDFThe structure-activity relationships and molecular modeling of the uracil nucleotide activated P2Y6 receptor have been studied. Uridine 5'-diphosphate (UDP) analogues bearing substitutions of the ribose moiety, the uracil ring, and the diphosphate group were synthesized and assayed for activity at the human P2Y6 receptor. The uracil ring was modified at the 4 position, with the synthesis of 4-substituted-thiouridine 5'-diphosphate analogues, as well as at positions 2, 3, and 5.
View Article and Find Full Text PDFThe discovery that some nucleoside analogues endowed with the unnatural L-configuration can possess biological activities has been a significant breakthrough in antiviral chemotherapy. In this regard, lamivudine (3TC) was the first L-nucleoside enantiomer approved against HIV and HBV, and several other L-nucleosides are currently under clinical development as antiviral agents.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
December 2005
Hitherto unknown restricted 3'-deoxy-3',4'-exo-methylene nucleoside derivatives bearing the nucleic acid naturally occurring pyrimidine bases have been synthesized. The compounds were tested for their activity against HIV, HBV, and several RNA viruses, but they did not show significant antiviral effect.
View Article and Find Full Text PDF