Publications by authors named "Christophe Lasseur"

Astronauts are spending longer periods locked up in ships or stations for scientific and exploration spatial missions. The International Space Station (ISS) has been inhabited continuously for more than 20 years and the duration of space stays by crews could lengthen with the objectives of human presence on the moon and Mars. If the environment of these space habitats is designed for the comfort of astronauts, it is also conducive to other forms of life such as embarked microorganisms.

View Article and Find Full Text PDF

The Arthrospira-B experiment is the first experiment in space ever allowing the online measurements of both oxygen production rate and growth rate of Limnospira indica PCC8005 in batch photobioreactors running on-board ISS. Four bioreactors were integrated in the ISS Biolab facility. Each reactor was composed of two chambers (gas and liquid) separated by a PTFE membrane and was run in batch conditions.

View Article and Find Full Text PDF

Long-term human Space missions depend on regenerative life support systems (RLSS) to produce food, water and oxygen from waste and metabolic products. Microbial biotechnology is efficient for nitrogen conversion, with nitrate or nitrogen gas as desirable products. A prerequisite to bioreactor operation in Space is the feasibility to reactivate cells exposed to microgravity and radiation.

View Article and Find Full Text PDF

The ability of cyanobacterium Arthrospira sp. to assimilate waste nitrogen sources (ammonium and urea) makes it an important candidate for wastewater management. The aim of this work was to evaluate a cultivation approach based on continuous-transitional-feeding regime (nitrate-ammonium-nitrate) in a photobioreactor to assess the effects of ammonium salts on Arthrospira sp.

View Article and Find Full Text PDF

The aim of the present work was to study the growth of two nitrifying bacteria. For modelling the nitrifying subsystem of the MELiSSA loop, Nitrosomonas europaea ATCC® 19718 and Nitrobacter winogradskyi ATCC® 25931 were grown separately and in cocultures. The kinetic parameters of a stoichiometric mass balanced Pirt model were identified: μmax=0.

View Article and Find Full Text PDF

Manmade ecosystems differ from their prototype biosphere by the principle of control. The Earth Biosphere is sustainable by stochastic control and very large time constants. By contrast, in a closed ecosystem such as the micro-ecological life support system alternative (MELiSSA system) developed by the European Space Agency for space exploration, a deterministic control is a prerequisite of sustainable existence.

View Article and Find Full Text PDF

The feasibility of nearly-complete conversion of lignocellulosic waste (70% food crops, 20% faecal matter and 10% green algae) into biogas was investigated in the context of a Life Support Project. The treatment comprised a series of processes, i.e.

View Article and Find Full Text PDF

The feasibility of nearly-complete conversion of lignocellulosic waste (70% food crops, 20% faecal matter and 10% green algae) into biogas was investigated in the context of a life support project. The treatment comprised a series of processes, i.e.

View Article and Find Full Text PDF

Optimized menus for a bioregenerative life support system have been developed based on measures of crop productivity, food item acceptability, menu diversity, and nutritional requirements of crew. Crop-specific biomass requirements were calculated from menu recipe demands while accounting for food processing and preparation losses. Under the assumption of staggered planting, the optimized menu demanded a total crop production area of 453 m2 for six crew.

View Article and Find Full Text PDF