Aim: Our goal was to describe a precision medicine program in a regional academic hospital, characterize features of included patients and present early data on clinical impact.
Materials And Methods: We prospectively included 163 eligible patients with late-stage cancer of any diagnosis from June 2020 to May 2022 in the Proseq Cancer trial. Molecular profiling of new or fresh frozen tumor biopsies was done by WES and RNAseq with parallel sequencing of non-tumoral DNA as individual reference.
Genetic alterations identified in adjacent normal appearing tissue in bladder cancer patients are indicative of a field disease. Here we assessed normal urothelium transformation and intra-tumour heterogeneity (ITH) in four patients with bladder cancer. Exome sequencing identified private acquired mutations in a lymph node metastasis and local recurrences.
View Article and Find Full Text PDFMost mammalian protein-coding gene promoters are divergent, yielding promoter upstream transcripts (PROMPTs) in the reverse direction from their conventionally produced mRNAs. PROMPTs are rapidly degraded by the RNA exosome rendering a general function of these molecules elusive. Yet, levels of certain PROMPTs are altered in stress conditions, like the DNA damage response (DDR), suggesting a possible regulatory role for at least a subset of these molecules.
View Article and Find Full Text PDFPROMoter uPstream Transcripts (PROMPTs) were identified as a new class of human RNAs, which are heterologous in length and produced only upstream of the promoters of active protein-coding genes. Here, we show that PROMPTs carry 3'-adenosine tails and 5'-cap structures. However, unlike mRNAs, PROMPTs are largely nuclear and rapidly turned over by the RNA exosome.
View Article and Find Full Text PDFTranscription and mRNA maturation are interdependent events. Although stimulatory connections between these processes within the same round of transcription are well described, functional coupling between separate transcription cycles remains elusive. Comparing time-resolved transcription profiles of single-copy integrated β-globin gene variants, we demonstrate that a polyadenylation site mutation decreases transcription initiation of the same gene.
View Article and Find Full Text PDFThe mouse Snurf/Snrpn gene has two differentially methylated regions (DMRs), the maternally methylated region at the 5' end (DMR1) and the paternally methylated region at the 3' end (DMR2). DMR1, a region that includes the Snrpn promoter and the entire intron 1, has been thought to be a germline DMR, which inherits the parental-specific methylation profile from the gametes. DMR1 is not only associated with imprinted Snrpn expression, but implicated in imprinting control of other genes in the region.
View Article and Find Full Text PDFStudies have shown that the bulk of eukaryotic genomes is transcribed. Transcriptome maps are frequently updated, but low-abundant transcripts have probably gone unnoticed. To eliminate RNA degradation, we depleted the exonucleolytic RNA exosome from human cells and then subjected the RNA to tiling microarray analysis.
View Article and Find Full Text PDFMouse Grb10 is a tissue-specific imprinted gene with promoter-specific expression. In most tissues, Grb10 is expressed exclusively from the major-type promoter of the maternal allele, whereas in the brain, it is expressed predominantly from the brain type promoter of the paternal allele. Such reciprocally imprinted expression in the brain and other tissues is thought to be regulated by DNA methylation and the Polycomb group (PcG) protein Eed.
View Article and Find Full Text PDFHuman earwax consists of wet and dry types. Dry earwax is frequent in East Asians, whereas wet earwax is common in other populations. Here we show that a SNP, 538G --> A (rs17822931), in the ABCC11 gene is responsible for determination of earwax type.
View Article and Find Full Text PDFThe human chromosome 15q11-q13, or mouse chromosome 7C, is an imprinting domain controlled by bipartite imprinting centers (ICs): Prader-Willi syndrome (PWS)-IC and Angelman syndrome (AS)-IC. PWS-IC functions to maintain the paternal epigenotype on the paternal chromosome in somatic cells, while AS-IC plays a role in the establishment of the maternal epigenetic mark at PWS-IC in the female germline or early embryos. Several alternative exons and promoters of Snurf-Snrpn (SNRPN upstream reading frame-small nuclear ribonucleoprotein polypeptide N) are expressed as "IC transcripts".
View Article and Find Full Text PDF