The nature and extent of diversity in the plankton has fascinated scientists for over a century. Initially, the discovery of many new species in the remarkably uniform and unstructured pelagic environment appeared to challenge the concept of ecological niches. Later, it became obvious that only a fraction of plankton diversity had been formally described, because plankton assemblages are dominated by understudied eukaryotic lineages with small size that lack clearly distinguishable morphological features.
View Article and Find Full Text PDFAnthropization of Palaeolithic caves open for tourism may favour collembola invasion and result in the formation of black stains attributed to pigmented fungi. However, ecological processes underpinning black stain formation are not fully understood. Here, we tested the hypotheses that black stains from the Apse room of Lascaux Cave display a specific microbiota enriched in pigmented fungi, and that collembola thriving on the stains have the potential to consume and disseminate these black fungi.
View Article and Find Full Text PDFThe biotic crisis following the end-Cretaceous asteroid impact resulted in a dramatic renewal of pelagic biodiversity. Considering the severe and immediate effect of the asteroid impact on the pelagic environment, it is remarkable that some of the most affected pelagic groups, like the planktonic foraminifera, survived at all. Here we queried a surface ocean metabarcoding dataset to show that calcareous benthic foraminifera of the clade Globothalamea are able to disperse actively in the plankton, and we show using molecular clock phylogeny that the modern planktonic clades originated from different benthic ancestors that colonized the plankton after the end-Cretaceous crisis.
View Article and Find Full Text PDFAll organisms on Earth are exposed to low doses of natural radioactivity but some habitats are more radioactive than others. Yet, documenting the influence of natural radioactivity on the evolution of biodiversity is challenging. Here, we addressed whether organisms living in naturally more radioactive habitats accumulate more mutations across generations using 14 species of waterlice living in subterranean habitats with contrasted levels of radioactivity.
View Article and Find Full Text PDFLimestone areas across the world develop karstic caves, which are populated by a wide range of macro- and microorganisms. Many of these caves display Paleolithic art or outstanding speleothems, and in the last century they have been subjected to anthropization due to touristic management and intense human frequentation. Despite their cultural importance and associated conservation issues, the impact of anthropization on cave biodiversity is not known.
View Article and Find Full Text PDFThe rate of molecular evolution varies widely among species. Life history traits (LHTs) have been proposed as a major driver of these variations. However, the relative contribution of each trait is poorly understood.
View Article and Find Full Text PDFThe evolutionary origin of the striking genome size variations found in eukaryotes remains enigmatic. The effective size of populations, by controlling selection efficacy, is expected to be a key parameter underlying genome size evolution. However, this hypothesis has proved difficult to investigate using empirical data sets.
View Article and Find Full Text PDFThe field of stoichiogenomics aims at understanding the influence of nutrient limitations on the elemental composition of the genome, transcriptome, and proteome. The 20 amino acids and the 4 nt differ in the number of nutrients they contain, such as nitrogen (N). Thus, N limitation shall theoretically select for changes in the composition of proteins or RNAs through preferential use of N-poor amino acids or nucleotides, which will decrease the N-budget of an organism.
View Article and Find Full Text PDFInvestigations of biodiversity, biogeography, and ecological processes rely on the identification of "species" as biologically significant, natural units of evolution. In this context, morphotaxonomy only provides an adequate level of resolution if reproductive isolation matches morphological divergence. In many groups of organisms, morphologically defined species often disguise considerable genetic diversity, which may be indicative of the existence of cryptic species.
View Article and Find Full Text PDFPlanktonic foraminifera (Rhizaria) are ubiquitous marine pelagic protists producing calcareous shells with conspicuous morphology. They play an important role in the marine carbon cycle, and their exceptional fossil record serves as the basis for biochronostratigraphy and past climate reconstructions. A major worldwide sampling effort over the last two decades has resulted in the establishment of multiple large collections of cryopreserved individual planktonic foraminifera samples.
View Article and Find Full Text PDFHippidions were equids with very distinctive anatomical features. They lived in South America 2.5 million years ago (Ma) until their extinction approximately 10 000 years ago.
View Article and Find Full Text PDFThe use of planktonic foraminifera in paleoceanography requires taxonomic consistency and precise assessment of the species biogeography. Yet, ribosomal small subunit (SSUr) DNA analyses have revealed that most of the modern morpho-species of planktonic foraminifera are composed of a complex of several distinct genetic types that may correspond to cryptic or pseudo-cryptic species. These genetic types are usually delimitated using partial sequences located at the 3'end of the SSUrDNA, but typically based on empirical delimitation.
View Article and Find Full Text PDFEffective population size (N e) is one of the most important parameters in, ecology, evolutionary and conservation biology; however, few studies of N e in surface freshwater organisms have been published to date. Even fewer studies have been carried out in groundwater organisms, although their evolution has long been considered to be particularly constrained by small N e. In this study, we estimated the contemporary effective population size of the obligate groundwater isopod: Proaselluswalteri (Chappuis, 1948).
View Article and Find Full Text PDFA key challenge for biologists is to document and explain global patterns of diversification in a wide range of environments. Here, we explore patterns of continental-scale diversification in a groundwater species-rich clade, the superfamily Aselloidea (Pancrustacea: Isopoda). Our analyses supported a constant diversification rate during most of the course of Aselloidea evolution, until 4-15 Ma when diversification rates started to decrease.
View Article and Find Full Text PDFThe planktonic foraminiferal morpho-species Globoconella inflata is widely used as a stratigraphic and paleoceanographic index. While G. inflata was until now regarded as a single species, we show that it rather constitutes a complex of two pseudo-cryptic species.
View Article and Find Full Text PDFExternal mechanical forces resulting from the pressure exerted by wind or water movement are a major stress factor for plants and may cause regular disturbances in many ecosystems. A plant's ability to resist these forces relies either on minimizing the forces encountered by the plant (avoidance strategy), or on maximizing its resistance to breakage (tolerance strategy). We investigated plant resistance strategies using aquatic vegetation as a model, and examined whether avoidance and tolerance are negatively correlated.
View Article and Find Full Text PDFMolecular tools have become prominent in ecology and evolution. A target of choice for molecular ecologists and evolutionists is mitochondrial DNA (mtDNA), whose many advantages have also convinced broad-scale, pragmatic programmes such as barcode initiatives. Of course, mtDNA is also of interest to human geneticists investigating mitochondrial diseases.
View Article and Find Full Text PDFWhereas the consequences of global warming at population or community levels are well documented, studies at the cellular level are still scarce. The study of the physiological or metabolic effects of such small increases in temperature (between +2 degrees C and +6 degrees C) is difficult because they are below the amplitude of the daily or seasonal thermal variations occurring in most environments. In contrast, subterranean biotopes are highly thermally buffered (+/-1 degrees C within a year), and underground water organisms could thus be particularly well suited to characterise cellular responses of global warming.
View Article and Find Full Text PDFSubterranean environments are characterized by the quasi absence of thermal variations (+/-1 degrees C within a year), and organisms living in these biotopes for several millions of years, such as hypogean crustaceans, can be expected to have adapted to this very stable habitat. As hypogean organisms experience minimal thermal variation in their native biotopes, they should not be able to develop any particular cold adaptations to cope with thermal fluctuations. Indeed, physiological responses of organisms to an environmental stress are proportional to the amplitude of the stress they endure in their habitats.
View Article and Find Full Text PDFDespite numerous mechanistic studies on physiological responses supporting freeze tolerance in anurans, few have addressed the evolutionary significance of this trait. We thus investigated the phylogenetic relationships among anuran species whose freeze tolerance has been assessed and in combination with new data on freezing tolerance of two closely related species of the European brown frogs (Rana temporaria and Rana dalmatina). The species we studied exhibited short survival times in frozen state (around 8 h for both species).
View Article and Find Full Text PDFBackground: Although today 15% of living primates are endemic to Madagascar, their diversity was even greater in the recent past since dozens of extinct species have been recovered from Holocene excavation sites. Among them were the so-called "giant lemurs" some of which weighed up to 160 kg. Although extensively studied, the phylogenetic relationships between extinct and extant lemurs are still difficult to decipher, mainly due to morphological specializations that reflect ecology more than phylogeny, resulting in rampant homoplasy.
View Article and Find Full Text PDFThe phenolic methyl ether 3,5-dimethoxytoluene (DMT) is a major scent compound of many modern rose varieties, and its fragrance participates in the characteristic "tea scent" that gave their name to Tea and Hybrid Tea roses. Among wild roses, phenolic methyl ether (PME) biosynthesis is restricted to Chinese rose species, but the progenitors of modern roses included both European and Chinese species (e.g.
View Article and Find Full Text PDF