Publications by authors named "Christophe Galland"

Vibrational Raman scattering-a process where light exchanges energy with a molecular vibration through inelastic scattering-is most fundamentally described in a quantum framework where both light and vibration are quantized. When the Raman scatterer is embedded inside a plasmonic nanocavity, as in some sufficiently controlled implementations of surface-enhanced Raman scattering (SERS), the coupled system realizes an optomechanical cavity where coherent and parametrically amplified light-vibration interaction becomes a resource for vibrational state engineering and nanoscale nonlinear optics. The purpose of this Perspective is to clarify the connection between the languages and parameters used in the fields of molecular cavity optomechanics (McOM) versus its conventional, "macroscopic" counterpart and to summarize the main results achieved so far in McOM and the most pressing experimental and theoretical challenges.

View Article and Find Full Text PDF

Nitrogen-vacancy (NV) centers in diamond have emerged as promising quantum sensors due to their highly coherent and optically addressable spin states with potential applications in high-sensitivity magnetometry. Homogeneously addressing large ensembles of NV centers offers clear benefit in terms of sensing precision as well as in fundamental studies of collective effects. Such experiments require a spatially uniform, intense, and broadband microwave field that can be difficult to generate.

View Article and Find Full Text PDF

Photonics in the ultraviolet provides an avenue for key advances in biosensing, pharmaceutical research, and environmental sensing. However, despite recent progress in photonic integration, a technological solution to fabricate photonic integrated circuits (PICs) operating in the UV-C wavelength range, namely, between 200 and 280 nm, remains elusive. Filling this gap will open opportunities for new applications, particularly in healthcare.

View Article and Find Full Text PDF

Electrically connected and plasmonically enhanced molecular junctions combine the optical functionalities of high field confinement and enhancement (cavity function), and of high radiative efficiency (antenna function) with the electrical functionalities of molecular transport. Such combined optical and electrical probes have proven useful for the fundamental understanding of metal-molecule contacts and contribute to the development of nanoscale optoelectronic devices including ultrafast electronics and nanosensors. Here, we employ a self-assembled metal-molecule-metal junction with a nanoparticle bridge to investigate correlated fluctuations in conductance and tunneling-induced light emission at room temperature.

View Article and Find Full Text PDF

Nanocavities formed by ultrathin metallic gaps permit the reproducible engineering and enhancement of light-matter interaction, with mode volumes reaching the smallest values allowed by quantum mechanics. While the enhanced vacuum field in metallic nanogaps has been firmly evidenced, fewer experimental reports have examined the far-field to near-field input coupling under strongly focused laser beam. Here, we experimentally demonstrate selective excitation of nanocavity modes controlled by the polarization and frequency of the laser beam.

View Article and Find Full Text PDF

Spontaneous vibrational Raman scattering is a ubiquitous form of light-matter interaction whose description necessitates quantization of the electromagnetic field. It is usually considered as an incoherent process because the scattered field lacks any predictable phase relationship with the incoming field. When probing an ensemble of molecules, the question therefore arises: What quantum state should be used to describe the molecular ensemble following spontaneous Stokes scattering? We experimentally address this question by measuring time-resolved Stokes-anti-Stokes two-photon coincidences on a molecular liquid consisting of several sub-ensembles with slightly different vibrational frequencies.

View Article and Find Full Text PDF

Monitoring neuronal activity with simultaneously high spatial and temporal resolution in living cell cultures is crucial to advance understanding of the development and functioning of our brain, and to gain further insights in the origin of brain disorders. While it has been demonstrated that the quantum sensing capabilities of nitrogen-vacancy (NV) centers in diamond allow real time detection of action potentials from large neurons in marine invertebrates, quantum monitoring of mammalian neurons (presenting much smaller dimensions and thus producing much lower signal and requiring higher spatial resolution) has hitherto remained elusive. In this context, diamond nanostructuring can offer the opportunity to boost the diamond platform sensitivity to the required level.

View Article and Find Full Text PDF

We present Molecular Vibration Explorer, a freely accessible online database and interactive tool for exploring vibrational spectra and tensorial light-vibration coupling strengths of a large collection of thiolated molecules. The "Gold" version of the database gathers the results from density functional theory calculations on 2800 commercially available thiol compounds linked to a gold atom, with the main motivation to screen the best molecules for THz and mid-infrared to visible upconversion. Additionally, the "Thiol" version of the database contains results for 1900 unbound thiolated compounds.

View Article and Find Full Text PDF

Coherent upconversion of terahertz and mid-infrared signals into visible light opens new horizons for spectroscopy, imaging, and sensing but represents a challenge for conventional nonlinear optics. Here, we used a plasmonic nanocavity hosting a few hundred molecules to demonstrate optomechanical transduction of submicrowatt continuous-wave signals from the mid-infrared (32 terahertz) onto the visible domain at ambient conditions. The incoming field resonantly drives a collective molecular vibration, which imprints a coherent modulation on a visible pump laser and results in upconverted Raman sidebands with subnatural linewidth.

View Article and Find Full Text PDF

Immense field enhancement and nanoscale confinement of light are possible within nanoparticle-on-mirror (NPoM) plasmonic resonators, which enable novel optically activated physical and chemical phenomena and render these nanocavities greatly sensitive to minute structural changes, down to the atomic scale. Although a few of these structural parameters, primarily linked to the nanoparticle and the mirror morphology, have been identified, the impact of molecular assembly and organization of the spacer layer between them has often been left uncharacterized. Here, we experimentally investigate how the complex and reconfigurable nature of a thiol-based self-assembled monolayer (SAM) adsorbed on the mirror surface impacts the optical properties of the NPoMs.

View Article and Find Full Text PDF
Article Synopsis
  • Plasmonic nanojunctions are tiny metal structures with nanometre gaps that enhance light-matter interactions and focus electromagnetic fields at a nanoscale level.
  • The study reveals that there are unexpected fluctuations in light emission from excited gold nanojunctions, linked to the formation of internal structures and interactions within the metal.
  • Interestingly, these changes do not affect the Raman signal or scattering spectrum, suggesting that metal luminescence can be used to study atomic fluctuations in plasmonic cavities alongside traditional methods.
View Article and Find Full Text PDF

Time-resolved Raman spectroscopy techniques offer various ways to study the dynamics of molecular vibrations in liquids or gases and optical phonons in crystals. While these techniques give access to the coherence time of the vibrational modes, they are not able to reveal the fragile quantum correlations that are spontaneously created between light and vibration during the Raman interaction. Here, we present a scheme leveraging universal properties of spontaneous Raman scattering to demonstrate Bell correlations between light and a collective molecular vibration.

View Article and Find Full Text PDF

Over the last decade, intravascular ultrasound (IVUS) has emerged as a useful adjunctive tool to angiography in an increasing number of catheter-based procedures for peripheral arterial disease (PAD). IVUS catheters offer accurate cross-sectional imaging of arterial vessels with high dimensional accuracy and provide accurate information about lesion morphology. IVUS enables assessment of the plaque morphology, vessel diameter, and the presence of arterial dissections.

View Article and Find Full Text PDF

Acute and subacute ischemia of lower limbs is associated with high risk of amputation and potential severe life-threatening complications. Despite a lack of clear therapeutic recommendations, surgical treatments such as thrombectomy or bypass and/or catheter-directed thrombolysis (CDT) have been first-line procedures in both acute and subacute limb ischemia, but each therapy may lead to significant morbidity and mortality. Such situations demand fast restoration of appropriate flow to preclude limb loss and other complications.

View Article and Find Full Text PDF

To assess the safety, efficacy and mid-term outcomes of single-session percutaneous mechanical thrombectomy (PMT) for acute symptomatic iliofemoral deep vein thrombosis (DVT) using the AspirexS device. Retrospective review of 30 patients (women, 23; mean age, 45.5 ± 19.

View Article and Find Full Text PDF

Background: To ascertain the safety and mid-term outcomes of RotarexS rotational atherectomy plus thrombectomy device (Straub Medical AG, Wangs, Switzerland) with or without adjunctive treatment (e.g., percutaneous transluminal angioplasty, PTA/drug-coated balloon, DCB/stenting) in patients with in-stent restenosis (ISR) or occlusion in the iliac and/or infrainguinal arteries.

View Article and Find Full Text PDF

Background: Femoral pseudoaneurysm (PA) is a frequent complication of arterial access for endovascular procedures. Surgery has traditionally been considered as the gold standard of therapy. We aimed to report our experience of percutaneous ultrasound (US)-guided balloon-assisted embolization with cyanoacrylate glue for the treatment of iatrogenic femoral PAs.

View Article and Find Full Text PDF

We propose and demonstrate a versatile technique to measure the lifetime of the one-phonon Fock state using two-color pump-probe Raman scattering and spectrally resolved, time-correlated photon counting. Following pulsed laser excitation, the n=1 phonon Fock state is probabilistically prepared by projective measurement of a single Stokes photon. The detection of an anti-Stokes photon generated by a second, time-delayed laser pulse probes the phonon population with subpicosecond time resolution.

View Article and Find Full Text PDF

Background: Onyx is a liquid embolic agent, which is approved for the treatment of cerebral vascular lesions but still rarely used in peripheral interventional radiology. The goal of this study is to report the feasibility and safety of embolization with Onyx for peripheral hemostatic and non-hemostatic endovascular procedures.

Methods: Retrospective study of all consecutive patients who underwent visceral or peripheral embolization with Onyx for hemostatic or non-hemostatic purpose in our department between May 2014 and November 2016.

View Article and Find Full Text PDF

Bragg waveguides are promising optical filters for pump suppression in spontaneous four-wave mixing (FWM) photon sources. In this work, we investigate the generation of unwanted photon pairs in the filter itself. We do this by taking advantage of the relation between spontaneous and classical FWM, which allows for the precise characterization of the nonlinear response of the device.

View Article and Find Full Text PDF

The kidney is the third most common abdominal organ to be injured in trauma, following the spleen and liver, respectively. The most commonly used classification scheme is the American Association for the Surgery of Trauma (AAST) classification of blunt renal injuries, which grades renal injury according to the size of laceration and its proximity to the renal hilum. Arteriovenous fistula and pseudoaneurysm are the most common iatrogenic biopsy-related or surgery-related vascular injuries in native kidneys.

View Article and Find Full Text PDF

Background: Post-thrombotic syndrome (PTS) is a frequent complication of deep vein thrombosis (DVT) despite adequate treatment. Venous angioplasty and stent placement has been progressively used to restore and maintain venous patency in PTS patients. This study reports our single-center experience with the use of endovascular treatment for chronic post-thrombotic symptomatic ilio-femoral venous obstructive lesions.

View Article and Find Full Text PDF

Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements.

View Article and Find Full Text PDF

The exceptional enhancement of Raman scattering by localized plasmonic resonances in the near field of metallic nanoparticles, surfaces or tips (SERS, TERS) has enabled spectroscopic fingerprinting down to the single molecule level. The conventional explanation attributes the enhancement to the subwavelength confinement of the electromagnetic field near nanoantennas. Here, we introduce a new model that also accounts for the dynamical nature of the plasmon-molecule interaction.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessione170v91rra9k6akefimie4hlgc6akdvm): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once