AbstractCold acclimation is a biological process that allows animals to survive at low temperatures. The freshwater invertebrate is subject to broad changes in environmental temperature and does not have the required motility in order to move to warmer environments during the winter. For this reason, had to develop robust mechanisms to achieve cold acclimation at the onset of winter.
View Article and Find Full Text PDFMechanical forces have been shown to influence cellular decisions to grow, die, or differentiate, through largely mysterious mechanisms. Separately, changes in resting membrane potential have been observed in development, differentiation, regeneration, and cancer. We now demonstrate that membrane potential is the central mediator of cellular response to mechanical pressure.
View Article and Find Full Text PDFAll animals detect and integrate diverse environmental signals to mediate behavior. Cnidarians, including jellyfish and sea anemones, both detect and capture prey using stinging cells called nematocytes which fire a venom-covered barb via an unknown triggering mechanism. Here, we show that nematocytes from use a specialized voltage-gated calcium channel (nCa) to distinguish salient sensory cues and control the explosive discharge response.
View Article and Find Full Text PDFOptical activation of neurons requires genetic manipulation or the use of chemical photoactivators with undesirable side effects. As a solution to these disadvantages, here, we demonstrate optically evoked neuronal activity in mouse cortical neurons in acute slices and in vivo by nonlinear excitation of gold nanoparticles. In addition, we use this approach to stimulate individual epitheliomuscular cells and evoke body contractions in .
View Article and Find Full Text PDFBackground: Advances in tissue clearing and molecular labeling methods are enabling unprecedented optical access to large intact biological systems. These developments fuel the need for high-speed microscopy approaches to image large samples quantitatively and at high resolution. While light sheet microscopy (LSM), with its high planar imaging speed and low photo-bleaching, can be effective, scaling up to larger imaging volumes has been hindered by the use of orthogonal light sheet illumination.
View Article and Find Full Text PDFAnimal behavior has been studied for centuries, but few efficient methods are available to automatically identify and classify it. Quantitative behavioral studies have been hindered by the subjective and imprecise nature of human observation, and the slow speed of annotating behavioral data. Here, we developed an automatic behavior analysis pipeline for the cnidarian using machine learning.
View Article and Find Full Text PDFHydroidfest 2016 took place on September 23-25 at the UC Davis Bodega Marine Laboratory in Bodega Bay, CA. The meeting brought together cnidarian researchers, with an emphasis on those studying hydrozoans, from North America and other parts of the world. The scientific topics discussed were diverse, including sessions focused on development, regeneration, aging, immunology, symbiosis, and neurobiology.
View Article and Find Full Text PDFTo understand the emergent properties of neural circuits, it would be ideal to record the activity of every neuron in a behaving animal and decode how it relates to behavior. We have achieved this with the cnidarian Hydra vulgaris, using calcium imaging of genetically engineered animals to measure the activity of essentially all of its neurons. Although the nervous system of Hydra is traditionally described as a simple nerve net, we surprisingly find instead a series of functional networks that are anatomically non-overlapping and are associated with specific behaviors.
View Article and Find Full Text PDFRapid estrogen actions are widely diverse across many cell types. We conducted a series of electrophysiological studies on single rat hypothalamic neurons and found that estradiol (E2) could rapidly and independently potentiate neuronal excitation/depolarizations induced by histamine (HA) and N-Methyl-d-Aspartate (NMDA). Now, the present whole-cell patch study was designed to determine whether E2 potentiates HA and NMDA depolarizations - mediated by distinctly different types of receptors - by the same or by different mechanisms.
View Article and Find Full Text PDFElectrically excitable cells, such as neurons, exhibit tremendous diversity in their firing patterns, a consequence of the complex collection of ion channels present in any specific cell. Although numerous methods are capable of measuring cellular electrical signals, understanding which types of ion channels give rise to these signals remains a significant challenge. Here, we describe exogenous probes which use a novel mechanism to report activity of voltage-gated channels.
View Article and Find Full Text PDFStudy Objective: To better understand the precise role of sensory corpuscles within the female external genitalia.
Design: After IRB approval, waste tissue samples were obtained from 10 normal girls (aged 2-9 years) who underwent surgery for labial fusion. Immunocytochemistry against protein gene product 9.
Obese, leptin deficient obob mice have profoundly decreased activity and increased food seeking behavior. The decreased activity has been attributed to obesity. In mice, we tested the hypothesis that leptin increases total locomotor activity but inhibits food anticipatory activity.
View Article and Find Full Text PDFHow do fluctuations in the level of generalized arousal of the brain affect the performance of specific motivated behaviors, such as sexual behaviors that depend on sexual arousal? A great deal of previous work has provided us with two important starting points in answering this question: (i) that histamine (HA) serves generalized CNS arousal and (ii) that heightened electrical activity of neurons in the ventromedial nucleus of the hypothalamus (VMN) is necessary and sufficient for facilitating the primary female sex behavior in laboratory animals, lordosis behavior. Here we used patch clamp recording technology to analyze HA effects on VMN neuronal activity. The results show that HA acting through H1 receptors (H1R) depolarizes these neurons.
View Article and Find Full Text PDFThe mechanisms by which animals adapt to an ever-changing environment have long fascinated scientists. Different forces, conveying information regarding various aspects of the internal and external environment, interact with each other to modulate behavioral arousal. These forces can act in concert or, at times, in opposite directions.
View Article and Find Full Text PDF