Publications by authors named "Christophe Dujardin"

This work presents an outline of a detection system that employs the Compton spectrometer method to assess the non-linearity of scintillator light yield. A novel approach is introduced, leading to more accurate measurements through the separate determination of the intrinsic light output parameters and the non-linearity of the scintillators. Key features of this system include the use of a portable scintillation detector with three photomultiplier tubes for precise measurement of the average number of detected photoelectrons and the incorporation of recent advancements in correction techniques for accidental coincidences.

View Article and Find Full Text PDF

Analytical chemistry has never yielded such a wealth of experimental data as it does today, and this exponential trend shows no sign of abating. We continually advance the capabilities of our instruments and conceive innovative concepts, all in a concerted effort to naturally push the boundaries of our understanding regarding intricate sample matrices. Spectroscopic imaging, in the broadest sense, is certainly the field where we observe this acceleration even more pronouncedly.

View Article and Find Full Text PDF

The development of X-ray scintillators with ultrahigh light yields and ultrafast response times is a long sought-after goal. In this work, a fundamental mechanism that pushes the frontiers of ultrafast X-ray scintillator performance is theoretically predicted and experimentally demonstrated: the use of nanoscale-confined surface plasmon polariton modes to tailor the scintillator response time via the Purcell effect. By incorporating nanoplasmonic materials in scintillator devices, this work predicts over tenfold enhancement in decay rate and 38% reduction in time resolution even with only a simple planar design.

View Article and Find Full Text PDF

We study the low-temperature (T = 4.7 K) emission dynamics of a thin film of methylammonium lead bromide (MAPbBr3), prepared via the anti-solvent method. Using intensity-dependent (over 5 decades) hyperspectral microscopy under quasi-resonant (532 nm) continuous wave excitation, we revealed spatial inhomogeneities in the thin film emission.

View Article and Find Full Text PDF

Quantum-well (QW) hybrid organic-inorganic perovskite (HOIP) crystals, e.g., APbX (A = BA, PEA; X = Br, I), demonstrated significant potentials as scintillating materials for wide energy radiation detection compared to their individual three-dimensional (3D) counterparts, e.

View Article and Find Full Text PDF

Two-dimensional hybrid-organic-inorganic perovskite (2D-HOIP) lead bromide perovskite crystals have demonstrated great potential as scintillators with high light yields and fast decay times while also being low cost with solution-processable materials for wide energy radiation detection. Ion doping has been also shown to be a very promising avenue for improvements of the scintillation properties of 2D-HOIP crystals. In this paper, we discuss the effect of rubidium (Rb) doping on two previously reported 2D-HOIP single crystals, BAPbBr and PEAPbBr.

View Article and Find Full Text PDF

We report the first doping of crystalline methyl-ammonium lead bromide perovskite (MAPbBr) films with CdSe/CdZnS core/shell quantum dots (QDs), using a soft-chemistry approach that preserves their high quantum yield and other remarkable luminescence properties. Our approach produces MAPbBr films of around 100 nm thickness, doped at volume ratios between 0.01 and 1% with colloidal CdSe/CdZnS QDs whose organic ligands were exchanged with halide ions to allow for close contact between the QDs and the perovskite matrix.

View Article and Find Full Text PDF

CsPbBr quantum dots (QDs) have recently gained much interest due to their excellent optical and scintillation properties and their potential for X-ray imaging applications. In this study, we blended CsPbBr QDs with resin at different QD concentrations to achieve thick films and to protect the CsPbBr QDs from environmental moisture. Then, their scintillation properties are investigated and compared to the traditional commercial scintillators, CsI:Tl microcolumns, and Gadox layers.

View Article and Find Full Text PDF

We explore the effect of the shell thickness on the time response of CdS/CdSe/CdS spherical quantum wells (SQWs) nanoscintillators under X-ray excitation. We first compare the spectral and timing properties under low and intense optical excitation, which allows us to identify the complex temporal and spectral response of the highly excited species. We find that a defect-induced delayed luminescence appears at large sizes.

View Article and Find Full Text PDF

We report the synthesis and optical characterization of fully inorganic gradient-shell CdSe/CdZnS nanocrystals (NCs) with high luminescence quantum yield (QY, 50%), which were obtained by replacing native oleic-acid (OA) ligands with halide ions (Cland Br). Absorption, photoluminescence excitation (PLE) and photoluminescence (PL) spectra in solution were unaffected by the ligand-exchange procedure. The halide-capped NCs were stable in solution for several weeks without modification of their PL spectra; once deposited as unprotected thin films and exposed to air, however, they did show signs of aging which we attribute to increasing heterogeneity of (effective) NC size.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are exploring innovative radiotherapy treatments for glioblastoma that use nanoscintillators, which convert X-rays into more effective photon energy ranges while limiting damage to surrounding tissues.
  • The study finds that rare-earth composite LaF:Ce nanoscintillators increase the effectiveness of radiation by producing damaging photo- and Auger electrons when exposed to specific X-ray energies.
  • Intracerebral injections of LaF:Ce in a glioblastoma model showed promising results, with 15% of subjects achieving complete tumor remission, demonstrating the potential of nanoscintillators to significantly enhance radiotherapy outcomes.
View Article and Find Full Text PDF

Obtaining transparent glasses made of functional coordination polymers (CPs) represents a tremendous opportunity for optical applications. In this context, the first transparent and red-emissive glasses of gold thiolate CPs have been obtained by simply applying mechanical pressure to amorphous powders of CPs. The three gold-based CP glasses are composed of either thiophenolate [Au(SPh)] , phenylmethanethiolate [Au(SMePh)] or phenylethanethiolate [Au(SEtPh)] .

View Article and Find Full Text PDF

The design of high-performance energy-converting materials is an essential step for the development of sensors, but the production of the bulk materials currently used remains costly and difficult. Therefore, a different approach based on the self-assembly of nanoparticles has been explored. We report on the preparation by solvothermal synthesis of highly crystalline CeF nanodiscs.

View Article and Find Full Text PDF

While doping of semiconductors or oxides is crucial for numerous technological applications, its control remains difficult especially when the material is reduced down to the nanometric scale. In this paper, we show that pulsed laser ablation of an undoped solid target in an aqueous solution containing activator ions offers a new way to synthesise doped-nanoparticles. The doping efficiency is evaluated for laser ablation of an undoped GdO target in aqueous solutions of EuCl with molar concentration from 10 mol L to 10 mol L.

View Article and Find Full Text PDF

Atomically dispersed metals promise the ultimate catalytic efficiency, but their stabilization onto suitable supports remains challenging owing to their aggregation tendency. Focusing on the industrially-relevant Pt/γ-Al2O3 catalyst, in situ X-ray absorption spectroscopy and environmental scanning transmission electron microscopy allow us to monitor the stabilization of Pt single atoms under O2 atmosphere, as well as their aggregation into mobile reduced subnanometric clusters under H2. Density functional theory calculations reveal that oxygen from the gas phase directly contributes to metal-support adhesion, maximal for single Pt atoms, whereas hydrogen only adsorbs on Pt, and thereby leads to Pt clustering.

View Article and Find Full Text PDF

The intrinsic properties of silica aerogels make them well suited for applications requiring high surface area. Therefore, the dispersion of functional nanoparticles (NPs) in these highly porous structures gives access to materials for wide range of applications such as catalysis, energy storage or sensing. The last one is particularly interesting if such composites possess good optical quality.

View Article and Find Full Text PDF

Ce-doped YAlO (YAG:Ce) nanocrystals were synthesized by a unique solvothermal method, under sub-critical conditions. A home-made autoclave was used, operating in a larger pressure and temperature range than that with conventional commercial equipment and allowing direct photoluminescence (PL) and X-ray absorption characterizations. The study of various synthesis conditions (pressure, temperature, precursor concentration, reaction time) allowed the best reaction conditions to be pinpointed to control YAG:Ce nanocrystal size, as well as crystal quality, and to get efficient optical properties.

View Article and Find Full Text PDF

We report the design and synthesis of europium-doped gadolinium oxysulfide nanoscintillators Gd O S:Eu conjugated with two different photosensitizers (PSs): a zinc chlorin (ZnTPC) and a zinc phtalocyanine (ZnPc) by covalent bonding through a layer of N-(3-trimethoxysilylpropyl)diethylenetriamine (TPDA). These conjugates were designed to be activated under X-ray excitation to allow a photodynamic effect, although this desired outcome was not achieved in this study. The monodispersed nanoparticles of ∼70 nm diameter were pegylated to be stabilized in aqueous suspension.

View Article and Find Full Text PDF

The influence of Ca codoping on the optical absorption, photo-, radio-, and thermo-luminescence properties of YAlO :Ce (YAP:Ce) crystals has been studied for four different calcium concentrations ranging from 0 to 500 ppm. Ca codoping results in a partial oxidation of Ce into Ce , The luminescence time response under pulsed X-ray excitation of the Ce /Ce admixure clearly demonstrates the role of hole migration on both the rise time and the generally observed slow components. From an application point of view, Ca codoping significantly improves the timing performances, but the induced presence of Ce ions is also the cause of a reduction in scintillation efficiency.

View Article and Find Full Text PDF

Carbon-based materials are of great technological and scientific interest in materials science. Pulsed laser ablation in liquids (PLAL) is extensively used as a method to produce nanoparticles including nanodiamond and related materials. In this feature article, we will review the use of PLAL to tackle the challenges of synthesizing carbon-based nanostructures.

View Article and Find Full Text PDF

We report the successful encapsulation of colloidal quantum dots in an inorganic matrix by pulsed laser deposition. Our technique is nondestructive and thus permits the incorporation of CdSe/CdS core/shell colloidal quantum dots in an amorphous yttrium oxide matrix (Y2O3) under full preservation of the advantageous optical properties of the nanocrystals. We find that controlling the kinetic energy of the matrix precursors by means of the oxygen pressure in the deposition chamber facilitates the survival of the encapsulated species, whose well-conserved optical properties such as emission intensity, luminescence spectrum, fluorescence lifetime, and efficiency as single-photon emitters we document in detail.

View Article and Find Full Text PDF

We explore the potential of CdSe/ZnS colloidal quantum dots (QDs) as probes for their immediate dielectric environment, based on the influence of the local refractive index on the fluorescence dynamics of these nanoemitters. We first compare ensembles of quantum dots in homogeneous solutions with single quantum dots dispersed on various dielectric substrates, which allows us to test the viability of a conceptual framework based on a hard-sphere region-of-influence and the Bruggeman effective-medium approach. We find that all our measurements can be integrated into a coherent description, provided that the conceptualized point-dipole emitter is positioned at a distance from the substrate that corresponds to the geometry of the QD.

View Article and Find Full Text PDF
Article Synopsis
  • X-ray induced luminescence sensitization was studied on three key scintillators: CsI:Tl, YAG:Ce, and LSO:Ce.
  • A model was developed to explain the interactions between trapping and recombination of free charge carriers, effectively describing the sensitization behavior observed in the experiments.
  • The research suggested a new approach to manage sensitization by intentionally adding deep traps, which could help mitigate the bright burn effect in these materials.
View Article and Find Full Text PDF

A predictive model for nanoparticle nucleation has not yet been successfully achieved. Classical nucleation theory fails because the atomistic nature of the seed has to be considered. Indeed, geometrical structure as well as stoichiometry do not always match the bulk values.

View Article and Find Full Text PDF

Scintillating nanoparticles (NPs) in combination with X-ray or γ-radiation have a great potential for deep-tissue cancer therapy because they can be used to locally activate photosensitizers and generate singlet oxygen in tumours by means of the photodynamic effect. To understand the complex spatial distribution of energy deposition in a macroscopic volume of water loaded with nanoscintillators, we have developed a GEANT4-based Monte Carlo program. We thus obtain estimates of the maximum expected efficiency of singlet oxygen production for various materials coupled to PS, X-ray energies, NP concentrations and NP sizes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: