Publications by authors named "Christophe Deraedt"

The performance of six newly synthesized benzo[h]quinoline-derived acetonitrilo pentamethylcyclopentadienyl iridium(III) tetrakis(3,5-bis-trifluoromethylphenyl)borate salts bearing different substituents -X (-OMe, -H, -Cl, -Br, -NO and -(NO ) ) on the heterochelating ligand were evaluated in the dehydro-O-silylation of benzyl alcohol and the monohydrosilylation of 4-methoxybenzonitrile by Et SiH, two reactions involving the electrophilic activation of the Si-H bond. The benchmark shows a direct dependence of the catalytic efficiency with the electronic effect of -X, which is confirmed by theoretical assessment of the intrinsic silylicities Π of hydridoiridium(III)-silylium adducts and by the theoretical evaluation of the propensity of hydridospecies to transfer the hydrido ligand to the activated substrate. The revisited analysis of the Ir-Si-H interactions shows that the most cohesive bond in hydridoiridium(III)-silylium adducts is the Ir-H one, while the Ir-Si is a weak donor-acceptor dative bond.

View Article and Find Full Text PDF

Ferrocene-containing polymers have been investigated for more than six decades, and more recently modern synthetic methods have allowed the fabrication of precise polymers that contain a variety of transition-metal complexes. Trends are now oriented towards applications, such as optics, energy conversion and storage, electrochemistry, magnetics, electric conductors and biomedicine. Metal-sandwich complexes such as those of ferrocene type and other related complexes that present redox-robust groups in polymers, i.

View Article and Find Full Text PDF

s (from dentro, δεντρο: tree in Greek), and (μεροσ, in greek: part) are introduced as a family of dendrimers constructed according to successive divergent 1 → 3 branching. The smaller have 27 terminal branches. With alcohol termini they were originally named arborols by Newkome, who pioneered 1 → 3 constructions of dendrimers and dendrons.

View Article and Find Full Text PDF

Nanoparticles (Pd, Pt, Rh) stabilized by G4OH PAMAM dendrimers and supported in SBA-15 (MNPs/SBA-15 with M = Pd, Pt, Rh) were efficiently used as catalysts in the acceptorless dehydrogenation of tetrahydroquinoline/indoline derivatives in toluene (release of H) at 130 °C. These catalysts are air stable, very active, robust, and recyclable during the process. The reverse hydrogenation reaction of quinoline derivatives (H storage) was also optimized and successfully performed in the presence of the same catalysts in toluene at 60 °C under only 1 atm of hydrogen gas.

View Article and Find Full Text PDF

Recyclable catalysts, especially those that display selective reactivity, are vital for the development of sustainable chemical processes. Among available catalyst platforms, heterogeneous catalysts are particularly well-disposed toward separation from the reaction mixture via filtration methods, which renders them readily recyclable. Furthermore, heterogeneous catalysts offer numerous handles-some without homogeneous analogues-for performance and selectivity optimization.

View Article and Find Full Text PDF

Pt, Rh, and Pd nanoclusters stabilized by PAMAM dendrimer are used for the first time in a gas flow reactor at high temperature (150-250 °C). Pt nanoclusters show a very high activity for the hydrogenation of the methylcyclopentane (MCP) at 200-225 °C with turnover freqency (TOF) up to 334 h and selectivity up to 99.6% for the ring opening isomerization at very high conversion (94%).

View Article and Find Full Text PDF

The Hayashi-Ito aldol reaction of methyl isocyanoacetate (MI) and benzaldehydes, a classic homogeneous Au(I)-catalyzed reaction, was studied with heterogenized homogeneous catalysts. Among dendrimer encapsulated nanoparticles (NPs) of Au, Pd, Rh, or Pt loaded in mesoporous supports and the homogeneous analogues, the Au NPs led to the highest yield and highest diastereoselectivity of products in toluene at room temperature. The Au catalyst was stable and was recycled for at least six runs without substantial deactivation.

View Article and Find Full Text PDF

The recovery and reuse of catalysts is a major challenge in the development of sustainable chemical processes. Two methods at the frontier between homogeneous and heterogeneous catalysis have recently emerged for addressing this problem: loading the catalyst onto a dendrimer or onto a magnetic nanoparticle. In this Account, we describe representative examples of these two methods, primarily from our research group, and compare them.

View Article and Find Full Text PDF

High efficiency and selectivity, easy magnetic recovery and recycling, and use of air as the oxidant at atmospheric pressure are major objectives for oxidation catalysis in terms of sustainable and green processes. A tris(triazolyl) ligand, so far only used in copper-catalyzed alkyne azide cycloadditions, was found to be extremely efficient in SiO2 /γ-Fe2 O3 -immobilized palladium complexes. It was characterized by inductively coupled plasma (ICP) analysis, transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectra (XPS) and found to fulfill the combined conditions for the selective oxidation of alcohols to aldehydes and ketones.

View Article and Find Full Text PDF

The design of redox-robust polymers is called for in view of interactions with nanoparticles and surfaces toward applications in nanonetwork design, sensing, and catalysis. Redox-robust triazolylbiferrocenyl (trzBiFc) polymers have been synthesized with the organometallic group in the side chain by ring-opening metathesis polymerization using Grubbs-III catalyst or radical polymerization and with the organometallic group in the main chain by Cu(I) azide alkyne cycloaddition (CuAAC) catalyzed by [Cu(I)(hexabenzyltren)]Br. Oxidation of the trzBiFc polymers with ferricenium hexafluorophosphate yields the stable 35-electron class-II mixed-valent biferrocenium polymer.

View Article and Find Full Text PDF

The engineering of novel catalytic nanomaterials that are highly active for crucial carbon-carbon bond formations, easily recoverable many times, and biocompatible is highly desirable in terms of sustainable and green chemistry. To this end, catalysts comprising dendritic "click" ligands that are immobilized on a magnetic nanoparticle (MNP) core, terminated by triethylene glycol (TEG) groups, and incorporate Pd nanoparticles (PdNPs) have been prepared. These nanomaterials are characterized by transmission electron microscopy (TEM), high-resolution TEM, inductively coupled plasma analysis, Fourier transform infrared spectroscopy, X-ray photoelectron spectra and energy-dispersive X-ray spectroscopy.

View Article and Find Full Text PDF

Long-term stable 3 nm gold nanoparticles are prepared by a simple reaction between HAuCl4 and sodium borohydride in water under ambient conditions which very efficiently catalyze 4-nitrophenol reduction to 4-nitroaniline.

View Article and Find Full Text PDF

Polymers containing triazolylbiferrocene are synthesized by ROMP or radical chain reactions and react with HAuCl4 to provide class-2 mixed-valent triazolylbiferrocenium polyelectrolyte networks (observed inter alia by TEM and AFM) that encapsulate gold nanoparticles (AuNPs). With triazolylbiferrocenium in the side polymer chain, the intertwined polymer networks form nanosnakes, unlike with triazolylbiferrocenium in the main polymer chain. By contrast, simple ferrocene-containing polymers do not form such a ferricenium network upon reaction with Au(III), but only small AuNPs, showing that the triazolyl ligand, the cationic charge, and the biferrocenium structure are coresponsible for such network formations.

View Article and Find Full Text PDF

Upon catalyst and substrate encapsulation, an amphiphilic dendrimer containing 27 triethylene glycol termini and 9 intradendritic triazole rings serves as a catalytic nanoreactor by considerably accelerating the Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) "click" reactions of various substrates in water using the catalyst Cu(hexabenzyltren)Br (tren = triaminoethylamine). Moreover this recyclable nanoreactor with intradendritic triazole rings strongly also activates the simple Sharpless-Fokin catalyst CuSO4 + sodium ascorbate in water under ambient conditions leading to exceptional TONs up to 510,000. This fully recyclable catalytic nanoreactor allows to considerably decrease the amount of this cheap copper catalyst down to industrially tolerable residues, and some biomedical and cosmetic applications are exemplified.

View Article and Find Full Text PDF

The stereoelectronic properties of the stabilizing ligands of gold nanoparticles (AuNPs) are shown to play a considerable role in their catalytic efficiency for 4-nitrophenol reduction by NaBH4, consistent with a mechanism involving restructuration of the AuNP surface that behaves as an "electron reservoir".

View Article and Find Full Text PDF

Simple "click" polycondensation metallopolymers of redox-robust bis(ethynyl)biferrocene (biFc) and di(azido) poly(ethylene glycol) (PEG400 and PEG1000) were designed for multiple functions including improvement of water solubility and biocompatibility, the introduction of mixed valency and sensing capabilities, and as nanoparticle stabilizers for catalysis.

View Article and Find Full Text PDF

Catalysis by palladium derivatives is now one of the most important tools in organic synthesis. Whether researchers design palladium nanoparticles (NPs) or nanoparticles occur as palladium complexes decompose, these structures can serve as central precatalysts in common carbon-carbon bond formation. Palladium NPs are also valuable alternatives to molecular catalysts because they do not require costly and toxic ligands.

View Article and Find Full Text PDF

Palladium nanoparticles (PdNPs) with a size of 1.4 nm are stabilized by dendritic nanoreactors containing 1,2,3-triazole ligands with hydrophilic triethylene glycol (TEG) termini. These PdNPs are stable for months under air and are extremely active for the Suzuki-Miyaura reactions of aryl bromides down to sub-ppm levels.

View Article and Find Full Text PDF