Publications by authors named "Christophe Der"

Plant-microbe interactions (PMIs) are regulated through a wide range of mechanisms in which sterols from plants and microbes are involved in numerous ways, including recognition, transduction, communication, and/or exchanges between partners. Phytosterol equilibrium is regulated by PMIs through expression of genes involved in phytosterol biosynthesis, together with their accumulation. As such, PMI outcomes also include plasma membrane (PM) functionalization events, in which phytosterols have a central role, and activation of sterol-interacting proteins involved in cell signaling.

View Article and Find Full Text PDF

Background: Drought stress negatively affects plant growth and productivity. Plants sense soil drought at the root level but the underlying mechanisms remain unclear. At the cell level, we aim to reveal the short-term root perception of drought stress through membrane dynamics.

View Article and Find Full Text PDF

Lipids and proteins modulate both the global order of plasma membrane (PM) and its organization in distinct domains. This raises the question of the influence on PM-ordered domain formation of PM composition, which is finely controlled during cell differentiation. Labeling of plant cell PM with an environment-sensitive probe demonstrated that the level of PM order is regulated during anisotropic expansion observed during both cell regeneration from protoplasts and cell differentiation along the growing root.

View Article and Find Full Text PDF

The laterally heterogeneous plant plasma membrane (PM) is organized into finely controlled specialized areas that include membrane-ordered domains. Recently, the spatial distribution of such domains within the PM has been identified as playing a key role in cell responses to environmental challenges. To examine membrane order at a local level, BY-2 tobacco suspension cell PMs were labelled with an environment-sensitive probe (di-4-ANEPPDHQ).

View Article and Find Full Text PDF
Article Synopsis
  • The plasma membrane (PM) is crucial for adapting to changing conditions, with sub-compartmentalization playing a role in signaling.
  • Plant-specific REMORIN proteins help regulate hormonal interactions and are key markers for nanodomains, linked to a unique moiety called REMORIN C-terminal Anchor.
  • The study reveals that REMORIN targeting is independent of traditional pathways and relies on specific lipids, emphasizing the importance of nanodomain organization for plant immunity.
View Article and Find Full Text PDF

Although plants are exposed to a great number of pathogens, they usually defend themselves by triggering mechanisms able to limit disease development. Alongside signalling events common to most such incompatible interactions, modifications of plasma membrane (PM) physical properties could be new players in the cell transduction cascade. Different pairs of elicitors (cryptogein, oligogalacturonides, and flagellin) and plant cells (tobacco and Arabidopsis) were used to address the issue of possible modifications of plant PM biophysical properties induced by elicitors and their links to other events of the defence signalling cascade.

View Article and Find Full Text PDF

Eukaryotic cells contain membranes exhibiting different levels of lipid order mostly related to their relative amount of sterol-rich domains, thought to mediate temporal and spatial organization of cellular processes. We previously provided evidence in Arabidopsis thaliana that sterols are crucial for execution of cytokinesis, the last stage of cell division. Recently, we used di-4-ANEPPDHQ, a fluorescent probe sensitive to order of lipid phases, to quantify the level of membrane order of the cell plate, the membrane structure separating daughter cells during somatic cytokinesis of higher plant cells.

View Article and Find Full Text PDF

Plant NADPH oxidases, also known as respiratory burst oxidase homologues (RBOHs), have been identified as a major source of reactive oxygen species (ROS) during plant-microbe interactions. The subcellular localization of the tobacco (Nicotiana tabacum) ROS-producing enzyme RBOHD was examined in Bright Yellow-2 cells before and after elicitation with the oomycete protein cryptogein using electron and confocal microscopy. The plasma membrane (PM) localization of RBOHD was confirmed and immuno-electron microscopy on purified PM vesicles revealed its distribution in clusters.

View Article and Find Full Text PDF

Lipid mixtures within artificial membranes undergo a separation into liquid-disordered and liquid-ordered phases. However, the existence of this segregation into microscopic liquid-ordered phases has been difficult to prove in living cells, and the precise organization of the plasma membrane into such phases has not been elucidated in plant cells. We developed a multispectral confocal microscopy approach to generate ratiometric images of the plasma membrane surface of Bright Yellow 2 tobacco (Nicotiana tabacum) suspension cells labeled with an environment sensitive fluorescent probe.

View Article and Find Full Text PDF

The effects of changes in plasma membrane (PM) sterol lateral organization and availability on the control of signaling pathways have been reported in various animal systems, but rarely assessed in plant cells. In the present study, the pentaene macrolide antibiotic filipin III, commonly used in animal systems as a sterol sequestrating agent, was applied to tobacco cells. We show that filipin can be used at a non-lethal concentration that still allows an homogeneous labeling of the plasma membrane and the formation of filipin-sterol complexes at the ultrastructural level.

View Article and Find Full Text PDF

The Arabidopsis thaliana Tonoplast Intrinsic Protein 1;1 (AtTIP1;1) is a member of the tonoplast aquaporin family. The tissue-specific expression pattern and intracellular localization of AtTIP1;1 were characterized using GUS and GFP fusion genes. Results indicate that AtTIP1;1 is expressed in almost all cell types with the notable exception of meristematic cells.

View Article and Find Full Text PDF

The plant defense elicitor cryptogein triggers well-known biochemical events of early signal transduction at the plasma membrane of tobacco (Nicotiana tabacum) cells, but microscopic observations of cell responses related to these early events were lacking. We determined that internalization of the lipophilic dye FM4-64, which is a marker of endocytosis, is stimulated a few minutes after addition of cryptogein to tobacco Bright Yellow-2 (BY-2) cells. This stimulation is specific to the signal transduction pathway elicited by cryptogein because a lipid transfer protein, which binds to the same receptor as cryptogein but without triggering signaling, does not increase endocytosis.

View Article and Find Full Text PDF

Reticulons are proteins that have been found predominantly associated with the endoplasmic reticulum in yeast and mammalian cells. While their functions are still poorly understood, recent findings suggest that they participate in the shaping of the tubular endoplamic reticulum (ER). Although reticulon-like proteins have been identified in plants, very little is known about their cellular localization and functions.

View Article and Find Full Text PDF

In plants the chloroplast thylakoid membrane is the site of light-dependent photosynthetic reactions coupled to ATP synthesis. The ability of the plant cell to build and alter this membrane system is essential for efficient photosynthesis. A nucleotide translocator homologous to the bovine mitochondrial ADP/ATP carrier (AAC) was previously found in spinach thylakoids.

View Article and Find Full Text PDF

Background Information: Autophagy is a catabolic process for degradation of cytoplasmic components in the vacuolar apparatus. A genome-wide survey recently showed evolutionary conservation among autophagy genes in yeast, mammals and plants. To elucidate the molecular and subcellular machinery responsible for the sequestration and subsequent digestion of intracellular material in plants, we utilized a combination of morphological and molecular methods (confocal laser-scanning microscopy, transmission electron microscopy and real-time PCR respectively).

View Article and Find Full Text PDF