This paper presents two methods for the efficient evaluation of the power balance in circular metasurface (MTS) antennas implementing arbitrary modulated surface impedances on a grounded dielectric slab. Both methods assume the surface current in the homogenized MTS to be known. The first technique relies on the surface current expansion with Fourier-Bessel basis functions (FBBF) and proceeds by integration of the Poynting vector on a closed surface.
View Article and Find Full Text PDFIn this paper we address the possibility to perform imaging of two samples within the same acquisition time using coupled ceramic resonators and one transmit/receive channel. We theoretically and experimentally compare the operation of our ceramic dual-resonator probe with a wire-wound solenoid probe, which is the standard probe used in ultrahigh-field magnetic resonance microscopy. We show that due to the low-loss ceramics used to fabricate the resonators, and a favorable distribution of the electric field within the conducting sample, a dual probe, which contains two samples, achieves an SNR enhancement by a factor close to the square root of 2 compared with a solenoid optimized for one sample.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
January 2019
Power dissipation in electromagnetic absorbers is a quadratic function of the incident fields. To characterize an absorber, one needs to deal with the coupling that may occur between different excitations. Energy absorption interferometry (EAI) is a technique that highlights the independent degrees of freedom through which a structure can absorb energy: the natural absorption modes of the structure.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
December 2016
In many applications of absorbing structures it is important to understand their spatial response to incident fields, for example in thermal solar panels, bolometric imaging, and controlling radiative heat transfer. In practice, the illuminating field often originates from thermal sources and is only partially spatially coherent when it reaches the absorbing device. In this paper, we present a method to fully characterize the way a structure can absorb such partially coherent fields.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
July 2014
Periodic thin-film structures are widely used as absorptive structures for electromagnetic radiation. We show that the absorption behavior for partially coherent illumination can be fully characterized by a set of characteristic functions in wavenumber space. We discuss the prediction of these functions using electromagnetic solvers based on periodic boundary conditions, and their measurement experimentally using Energy Absorption Interferometry (EAI).
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
December 2013
The optical response of dense finite arrays of nanoparticles can be efficiently analyzed with the help of macro basis functions obtained by employing the array scanning method. This is demonstrated by analyzing optical collimation in arrays of silver nanorods. The accuracy of the solution obtained with the proposed method has been validated by comparison with solutions obtained employing the Krylov subspace iterative method.
View Article and Find Full Text PDF