CD73 is the key ectoenzyme involved in the generation of AMP-derived adenosine, which contributes to immunosuppression in the MM BM milieu. Blocking CD73 activity with a potent, selective, orally bioavailable CD73 inhibitor ORIC-533 decreases adenosine generation, overcomes immune suppression, and restores immune cell-mediated MM cell lysis. Based on these preclinical studies, a multi-center clinical trial of ORIC-533 has been initiated in patients with relapsed refractory MM (NCT05227144).
View Article and Find Full Text PDFPurpose: Sotrovimab (VIR-7831), a human IgG1κ monoclonal antibody (mAb), binds to a conserved epitope on the SARS-CoV-2 spike protein receptor binding domain (RBD). The Fc region of VIR-7831 contains an LS modification to promote neonatal Fc receptor (FcRn)-mediated recycling and extend its serum half-life. Here, we aimed to evaluate the impact of the LS modification on tissue biodistribution, by comparing VIR-7831 to its non-LS-modified equivalent, VIR-7831-WT, in cynomolgus monkeys.
View Article and Find Full Text PDFThe deubiquitinase USP7 regulates the levels of multiple proteins with roles in cancer progression and immune response. Thus, USP7 inhibition may decrease oncogene function, increase tumor suppressor function, and sensitize tumors to DNA-damaging agents. We have discovered a novel chemical series that potently and selectively inhibits USP7 in biochemical and cellular assays.
View Article and Find Full Text PDFUSP7 is a promising target for cancer therapy as its inhibition is expected to decrease function of oncogenes, increase tumor suppressor function, and enhance immune function. Using a structure-based drug design strategy, a new class of reversible USP7 inhibitors has been identified that is highly potent in biochemical and cellular assays and extremely selective for USP7 over other deubiquitinases. The succinimide was identified as a key potency-driving motif, forming two strong hydrogen bonds to the allosteric pocket of USP7.
View Article and Find Full Text PDFThe pharmacokinetics and biodistribution of the (14) C-labeled actinide decorporation agent 3,4,3-LI(1,2-HOPO) were investigated in young adult Swiss Webster mice and Sprague Dawley rats, after intravenous, intraperitoneal, and oral dose administration. In all routes investigated, the radiolabeled compound was rapidly distributed to various tissues and organs of the body. In mice, the 24 h fecal elimination profiles suggested that the biliary route is the predominant route of elimination.
View Article and Find Full Text PDFHemoproteins are powerful oxidative catalysts. However, despite the diversity of functions known to be susceptible to oxidation by these catalysts, it is not known whether they can oxidize carboxylic acids to carboxylic radicals. We report here that incubation of horseradish peroxidase (HRP) at acidic pH with H(2)O(2) in acetate buffer results in rapid modification of the heme group and loss of catalytic activity.
View Article and Find Full Text PDFThe mammalian peroxidases, including myeloperoxidase and lactoperoxidase, bind their prosthetic heme covalently through ester bonds to two of the heme methyl groups. These bonds are autocatalytically formed. No other peroxidase is known to form such bonds.
View Article and Find Full Text PDFThe heme in lactoperoxidase is attached to the protein by ester bonds between the heme 1- and 5-methyl groups and Glu-375 and Asp-275, respectively. To investigate the cross-linking process, we have examined the D225E, E375D, and D225E/E375D mutants of bovine lactoperoxidase. The heme in the E375D mutant is only partially covalently bound, but exposure to H(2)O(2) results in complete covalent binding and a fully active protein.
View Article and Find Full Text PDF