Publications by authors named "Christophe C Le Dantec"

Perceptual learning and contextual learning are two types of implicit visual learning that can co-occur in the same tasks. For example, to find an animal in the woods, you need to know where to look in the environment (contextual learning) and you must be able to discriminate its features (perceptual learning). However, contextual and perceptual learning are typically studied using distinct experimental paradigms, and little is known regarding their comparative neural mechanisms.

View Article and Find Full Text PDF

This study examined how different forms of decision-making modulate time perception. Participants performed temporal bisection and generalization tasks, requiring them to either categorize a stimulus duration as more similar to short or long standards (bisection), or identify whether or not a duration was the same as a previously-presented standard (generalization). They responded faster in the bisection task than in the generalization one for long durations.

View Article and Find Full Text PDF

In studies of perceptual learning (PL), subjects are typically highly trained across many sessions to achieve perceptual benefits on the stimuli in those tasks. There is currently significant debate regarding what sources of brain plasticity underlie these PL-based learning improvements. Here we investigate the hypothesis that PL, among other mechanisms, leads to task automaticity, especially in the presence of the trained stimuli.

View Article and Find Full Text PDF

The mechanisms guiding our learning and memory processes are of key interest to human cognition. While much research shows that attention and reinforcement processes help guide the encoding process, there is still much to know regarding how our brains choose what to remember. Recent research of task-irrelevant perceptual learning (TIPL) has found that information presented coincident with important events is better encoded even if participants are not aware of its presence (see Seitz & Watanabe, 2009).

View Article and Find Full Text PDF

Research of perceptual learning has received significant interest due to findings that training on perceptual tasks can yield learning effects that are specific to the stimulus features of that task. However, recent studies have demonstrated that while training a single stimulus at a single location can yield a high-degree of stimulus specificity, training multiple features, or at multiple locations can reveal a broad transfer of learning to untrained features or stimulus locations. We devised a high resolution, high capacity, perceptual learning procedure with the goal of testing whether spatial specificity can be found in cases where observers are highly trained to discriminate stimuli in many different locations in the visual field.

View Article and Find Full Text PDF

When we perform any task, we engage a diverse set of processes. These processes can be optimized with learning. While there exists substantial research that probes specific aspects of learning, there is a scarcity of research regarding interactions between different types of learning.

View Article and Find Full Text PDF