Emissions due to tires retread/repair and incineration are a cause of concern owing to the presence of nanoparticles in the products. The assessment exposure to humans hereto related is a challenge in an environmental context. The first object of this work is to develop a method to characterize the emission sources using online (counting and sizing) and offline measurements.
View Article and Find Full Text PDFSurface coatings are one promising option to prevent bacterial adhesion and biofilm formation given the prevalence of antibiotic resistant bacterial strains. Titanium dioxide (TiO) is presently considered to be the only photocatalytic material suitable for commercial use, although the toxicity risks of TiO, particularly in its nanoparticulate form, have not been fully addressed. The aim of this study was to determine release of nanoparticles (NPs) from functional materials for medical applications and their aerosol formation.
View Article and Find Full Text PDFBackground: Recently, much progress has been made to develop more physiologic in vitro models of the respiratory system and improve in vitro simulation of particle exposure through inhalation. Nevertheless, the field of nanotoxicology still suffers from a lack of relevant in vitro models and exposure methods to predict accurately the effects observed in vivo, especially after respiratory exposure. In this context, the aim of our study was to evaluate if exposing pulmonary cells at the air-liquid interface to aerosols of inhalable and poorly soluble nanomaterials generates different toxicity patterns and/or biological activation levels compared to classic submerged exposures to suspensions.
View Article and Find Full Text PDFThe present article presents an experimental protocol to investigate particle aerosolization of a product under abrasion and under environmental weathering, which is a fundamental element to the approach of nanosafety-by-design of nanostructured products for their durable development. This approach is basically a preemptive one in which the focus is put on minimizing the emission of engineered nanomaterials' aerosols during the usage phase of the product's life cycle. This can be attained by altering its material properties during its design phase without compromising with any of its added benefits.
View Article and Find Full Text PDFThe study presented here focuses on commercial antibacterial tiles whose emissivity of (nano) particles due to abrasion has yet barely been investigated. The tiles have been characterized regarding their surface properties and composition throughout their chain-of-use, i.e.
View Article and Find Full Text PDFIn the present work, we investigate the effect of weathering duration on a commercial photocatalytic nanocoating on the basis of its nanoparticle emission tendency into two media, air and water. It is found that increased weathering duration results in stepwise structural deterioration of the nanocoating, which in turn decreases the nanocoating life, changes the nanocoating removal mechanism, and increases the particle emission concentration. Emission of free TiO2 nanoparticles is found to be weathering duration dependent.
View Article and Find Full Text PDF