Publications by authors named "Christophe Bichara"

Although widely studied experimentally in the 1990s, the structure and properties of low-dimensional or high-pressure phases of fullerenes have recently been re-examined. Remarkably, recent experiments have shown that transparent, nearly pure amorphous sp3-bonded carbon phases can be obtained by heating a C60 molecular crystal at a high pressure. With the additional aim of testing the ability of three classical carbon potentials reactive empirical bond order, environment-dependent interatomic potential, and reactive force-field to reproduce these results, we investigate the details of the structural transformations undergone by fullerene crystals over a wide range of pressures and temperatures.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs), hollow cylinders of carbon, hold great promise for advanced technologies, provided their structure remains uniform throughout their length. Their growth takes place at high temperatures across a tube-catalyst interface. Structural defects formed during growth alter CNT properties.

View Article and Find Full Text PDF

Glasses are commonly described as disordered counterparts of the corresponding crystals; both usually share the same short-range order, but glasses lack long-range order. Here, a quantification of chemical bonding in a series of glasses and their corresponding crystals is performed, employing two quantum-chemical bonding descriptors, the number of electrons transferred and shared between adjacent atoms. For popular glasses like SiO, GeSe, and GeSe, the quantum-chemical bonding descriptors of the glass and the corresponding crystal hardly differ.

View Article and Find Full Text PDF

Recent direct measurements of the growth kinetics of individual carbon nanotubes revealed abrupt changes in the growth rate of nanotubes maintaining the same crystal structure. These stochastic switches call into question the possibility of chirality selection based on growth kinetics. Here, we show that a similar average ratio between fast and slow rates of around 1.

View Article and Find Full Text PDF

Understanding the kinetic selectivity of carbon nanotube growth at the scale of individual nanotubes is essential for the development of high chiral selectivity growth methods. Here we demonstrate that homodyne polarization microscopy can be used for high-throughput imaging of long individual carbon nanotubes under real growth conditions (at ambient pressure, on a substrate) and with subsecond time resolution. Our observations on hundreds of individual nanotubes reveal that about half of them grow at a constant rate all along their lifetime while the other half exhibits stochastic changes in growth rates and/or switches between growth, pause, and shrinkage.

View Article and Find Full Text PDF

Recently, W-based catalysts have provided a promising route to synthesize single-walled carbon nanotubes (SWCNTs) with specific chirality, but the mechanism of the growth selectivity is vaguely understood. We propose a strategy to identify the atomic structure as well as the structure evolution of the Co-W-C ternary SWCNT catalyst. The key is to use a thin SiO film as the catalyst support and observation window.

View Article and Find Full Text PDF

Recent advances in structural control during the synthesis of SWCNTs have in common the use of bimetallic nanoparticles as catalysts, despite the fact that their exact role is not fully understood. We therefore analyze the effect of the catalyst's chemical composition on the structure of the resulting SWCNTs by comparing three bimetallic catalysts (FeRu, CoRu and NiRu). A specific synthesis protocol is designed to impede the catalyst nanoparticle coalescence mechanisms and stabilize their diameter distributions throughout the growth.

View Article and Find Full Text PDF

Advances in the synthesis and scalable manufacturing of single-walled carbon nanotubes (SWCNTs) remain critical to realizing many important commercial applications. Here we review recent breakthroughs in the synthesis of SWCNTs and highlight key ongoing research areas and challenges. A few key applications that capitalize on the properties of SWCNTs are also reviewed with respect to the recent synthesis breakthroughs and ways in which synthesis science can enable advances in these applications.

View Article and Find Full Text PDF

While solid-state materials are commonly classified as covalent, ionic, or metallic, there are cases that defy these iconic bonding mechanisms. Phase-change materials (PCMs) for data storage are a prominent example: they have been claimed to show "resonant bonding," but a clear definition of this mechanism has been lacking. Here, it is shown that these solids are fundamentally different from resonant bonding in the π-orbital systems of benzene and graphene, based on first-principles data for vibrational, optical, and polarizability properties.

View Article and Find Full Text PDF

Single-walled carbon nanotubes are hollow cylinders that can grow centimeters long via carbon incorporation at the interface with a catalyst. They display semiconducting or metallic characteristics, depending on their helicity, which is determined during their growth. To support the quest for a selective synthesis, we develop a thermodynamic model that relates the tube-catalyst interfacial energies, temperature, and the resulting tube chirality.

View Article and Find Full Text PDF

The process by which organic matter decomposes deep underground to form petroleum and its underlying kerogen matrix has so far remained a no man's land to theoreticians, largely because of the geological (Myears) timescale associated with the process. Using reactive molecular dynamics and an accelerated simulation framework, the replica exchange molecular dynamics method, we simulate the full transformation of cellulose into kerogen and its associated fluid phase under prevailing geological conditions. We observe in sequence the fragmentation of the cellulose crystal and production of water, the development of an unsaturated aliphatic macromolecular phase and its aromatization.

View Article and Find Full Text PDF

Chemical vapor deposition synthesis of single-walled carbon nanotubes, using an Fe catalyst, and alternating methane and carbon monoxide as carbon feedstocks, leads to the reversible formation of junctions between tubes of different diameters. Combined with an atomistic modeling of the tube/catalyst interface, this shows that the ratio of diameters of the tube and its seeding particle, denoting the growth mode, depends on the carbon fraction inside the catalyst. With carbon monoxide, nanoparticles are strongly carbon enriched, and tend to dewet the tube, in a perpendicular growth mode.

View Article and Find Full Text PDF

More than 20 years after their discovery, our understanding of the growth mechanisms of single-wall carbon nanotubes is still incomplete, in spite of a large number of investigations motivated by potential rewards in many possible applications. Among the many techniques used to solve this challenging puzzle, computer simulations can directly address an atomic scale that is hardly accessible by other experiments, and thereby support or invalidate different ideas, assumptions, or models. In this paper, we review some aspects of the computer simulation and theoretical approaches dedicated to the study of single-wall carbon nanotube growth, and suggest some ways towards a better control of the synthesis processes by chemical vapor deposition.

View Article and Find Full Text PDF

Elucidating the roles played by carbon solubility in catalyst nanoparticles is required to better understand the growth mechanisms of single-walled carbon nanotubes (SWNTs). Here, we highlight that controlling the level of dissolved carbon is of key importance to enable nucleation and growth. We first performed tight binding based atomistic computer simulations to study carbon incorporation in metal nanoparticles with low solubilities.

View Article and Find Full Text PDF

Aging is a ubiquitous phenomenon in glasses. In the case of phase-change materials, it leads to a drift in the electrical resistance, which hinders the development of ultrahigh density storage devices. Here we elucidate the aging process in amorphous GeTe, a prototypical phase-change material, by advanced numerical simulations, photothermal deflection spectroscopy and impedance spectroscopy experiments.

View Article and Find Full Text PDF

Understanding the composition dependence of the hardness in materials is of primary importance for infrastructures and handled devices. Stimulated by the need for stronger protective screens, topological constraint theory has recently been used to predict the hardness in glasses. Herein, we report that the concept of rigidity transition can be extended to a broader range of materials than just glass.

View Article and Find Full Text PDF

The dynamics of the graphene-catalyst interaction during chemical vapor deposition are investigated using in situ, time- and depth-resolved X-ray photoelectron spectroscopy, and complementary grand canonical Monte Carlo simulations coupled to a tight-binding model. We thereby reveal the interdependency of the distribution of carbon close to the catalyst surface and the strength of the graphene-catalyst interaction. The strong interaction of epitaxial graphene with Ni(111) causes a depletion of dissolved carbon close to the catalyst surface, which prevents additional layer formation leading to a self-limiting graphene growth behavior for low exposure pressures (10(-6)-10(-3) mbar).

View Article and Find Full Text PDF

We discuss the synthesis of carbon nanotubes (CNTs) and graphene by catalytic chemical vapour deposition (CCVD) and plasma-enhanced CVD (PECVD), summarising the state-of-the-art understanding of mechanisms controlling their growth rate, chiral angle, number of layers (walls), diameter, length and quality (defects), before presenting a new model for 2D nucleation of a graphene sheet from amorphous carbon on a nickel surface. Although many groups have modelled this process using a variety of techniques, we ask whether there are any complementary ideas emerging from the different proposed growth mechanisms, and whether different modelling techniques can give the same answers for a given mechanism. Subsequently, by comparing the results of tight-binding, semi-empirical molecular orbital theory and reactive bond order force field calculations, we demonstrate that graphene on crystalline Ni(111) is thermodynamically stable with respect to the corresponding amorphous metal and carbon structures.

View Article and Find Full Text PDF

The healing of graphene grown from a metallic substrate is investigated using tight-binding Monte Carlo simulations. At temperatures (ranging from 1000 to 2500 K), an isolated graphene sheet can anneal a large number of defects suggesting that their healings are thermally activated. We show that in the presence of a nickel substrate we obtain a perfect graphene layer.

View Article and Find Full Text PDF

Negative thermal expansion (NTE) in tellurium based liquid alloys (GeTe6 and GeTe12) is analyzed through the atomic vibrational properties. Using neutron inelastic scattering, we show that the structural evolution resulting in the NTE is due to a gain of vibrational entropy that cancels out the Peierls distortion. In the NTE temperature range, these competing effects give rise to noticeable changes in the vibrational density of states spectra.

View Article and Find Full Text PDF

We first report the atomistic grand canonical Monte Carlo simulations of the synthesis of two realistic ordered microporous carbon replica in two siliceous forms of faujasite zeolite (cubic Y-FAU and hexagonal EMT). Atomistic simulations of hydrogen adsorption isotherms in these two carbon structures and their Li-doped composites were carried out to determine their storage capacities at 77 and 298 K. We found that these new forms of carbon solids and their Li-doped versions show very attractive hydrogen storage capacities at 77 and 298 K, respectively.

View Article and Find Full Text PDF

The early stages of carbon nanotube nucleation are investigated using field ion/electron microscopy along with in situ local chemical probing of a single nanosized nickel crystal. To go beyond experiments, tight-binding Monte Carlo simulations are performed on oriented Ni slabs. Real-time field electron imaging demonstrates a carbon-induced increase of the number density of steps in the truncated vertices of a polyhedral Ni nanoparticle.

View Article and Find Full Text PDF

First principles and tight binding Monte Carlo simulations show that junctions between single-walled carbon nanotubes (SWNTs) and nickel clusters are on the cluster surface, and not at subsurface sites, irrespective of the nanotube chirality, temperature, and whether the docking is gentle or forced. Gentle docking helps to preserve the pristine structure of the SWNT at the metal interface, whereas forced docking may partially dissolve the SWNT in the cluster. This is important for SWNT-based electronics and SWNT-seeded regrowth.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvbertat234totb1nid1b2h9t1a4eg6e5): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once