The lateral wall of the mouse subventricular zone harbors neural stem cells (NSC, B cells) which generate proliferating transient-amplifying progenitors (TAP, C cells) that ultimately give rise to neuroblasts (NB, A cells). Molecular profiling at the single-cell level struggles to distinguish these different cell types. Here, we combined transcriptome analyses of FACS-sorted cells and single-cell RNAseq to demonstrate the existence of an abundant, clonogenic and multipotent population of immature neuroblasts (iNB cells) at the transition between TAP and migrating NB (mNB).
View Article and Find Full Text PDFGermline cells produce gametes, which are specialized cells essential for sexual reproduction. Germline cells first amplify through several rounds of mitosis before switching to the meiotic program, which requires specific sets of proteins for DNA recombination, chromosome pairing, and segregation. Surprisingly, we previously found that some proteins of the synaptonemal complex, a prophase I meiotic structure, are already expressed and required in the mitotic region of Drosophila females.
View Article and Find Full Text PDFAgeing is characterised at the molecular level by six transcriptional 'hallmarks of ageing', that are commonly described as progressively affected as time passes. By contrast, the 'Smurf' assay separates high-and-constant-mortality risk individuals from healthy, zero-mortality risk individuals, based on increased intestinal permeability. Performing whole body total RNA sequencing, we found that Smurfness distinguishes transcriptional changes associated with chronological age from those associated with biological age.
View Article and Find Full Text PDFGlioblastoma (GBM) is the most common primary malignant brain tumor in adults, yet it remains refractory to systemic therapy. Elimination of senescent cells has emerged as a promising new treatment approach against cancer. Here, we investigated the contribution of senescent cells to GBM progression.
View Article and Find Full Text PDFCell motility is critical for tumor malignancy. Metabolism being an obligatory step in shaping cell behavior, we looked for metabolic weaknesses shared by motile cells across the diverse genetic contexts of patients' glioblastoma. Computational analyses of single-cell transcriptomes from thirty patients' tumors isolated cells with high motile potential and highlighted their metabolic specificities.
View Article and Find Full Text PDFCells remodel their cytoplasm with force-generating cytoskeletal motors. Their activity generates random forces that stir the cytoplasm, agitating and displacing membrane-bound organelles like the nucleus in somatic and germ cells. These forces are transmitted inside the nucleus, yet their consequences on liquid-like biomolecular condensates residing in the nucleus remain unexplored.
View Article and Find Full Text PDFtRNA fragments (tRFs) are a class of small non-coding RNAs (sncRNAs) derived from tRNAs. tRFs are highly abundant in many cell types including stem cells and cancer cells, and are found in all domains of life. Beyond translation control, tRFs have several functions ranging from transposon silencing to cell proliferation control.
View Article and Find Full Text PDFBackground: The vast ecosystem of single-cell RNA-sequencing tools has until recently been plagued by an excess of diverging analysis strategies, inconsistent file formats, and compatibility issues between different software suites. The uptake of 10x Genomics datasets has begun to calm this diversity, and the bioinformatics community leans once more towards the large computing requirements and the statistically driven methods needed to process and understand these ever-growing datasets.
Results: Here we outline several Galaxy workflows and learning resources for single-cell RNA-sequencing, with the aim of providing a comprehensive analysis environment paired with a thorough user learning experience that bridges the knowledge gap between the computational methods and the underlying cell biology.
2'-O-Methylation (Nm) represents one of the most common RNA modifications. Nm affects RNA structure and function with crucial roles in various RNA-mediated processes ranging from RNA silencing, translation, self versus non-self recognition to viral defense mechanisms. Here, we identify two Nm methyltransferases (Nm-MTases) in Drosophila melanogaster (CG7009 and CG5220) as functional orthologs of yeast TRM7 and human FTSJ1.
View Article and Find Full Text PDFGlioblastoma cell ability to adapt their functioning to microenvironment changes is a source of the extensive intra-tumor heterogeneity characteristic of this devastating malignant brain tumor. A systemic view of the metabolic pathways underlying glioblastoma cell functioning states is lacking. We analyzed public single cell RNA-sequencing data from glioblastoma surgical resections, which offer the closest available view of tumor cell heterogeneity as encountered at the time of patients' diagnosis.
View Article and Find Full Text PDFpiRNA-mediated repression of transposable elements (TE) in the germline limits the accumulation of mutations caused by their transposition. It is not clear whether the piRNA pathway plays a role in adult, nongonadal tissues in To address this question, we analyzed the small RNA content of adult heads. We found that the varying amount of piRNA-sized, ping-pong positive molecules in heads correlates with contamination by gonadal tissue during RNA extraction, suggesting that most of the piRNAs detected in heads originate from gonads.
View Article and Find Full Text PDFSkeletal muscle satellite cells are quiescent adult resident stem cells that activate, proliferate and differentiate to generate myofibres following injury. They harbour a robust proliferation potential and self-renewing capacity enabling lifelong muscle regeneration. Although several classes of microRNAs were shown to regulate adult myogenesis, systematic examination of stage-specific microRNAs during lineage progression from the quiescent state is lacking.
View Article and Find Full Text PDFMetavisitor is a software package that allows biologists and clinicians without specialized bioinformatics expertise to detect and assemble viral genomes from deep sequence datasets. The package is composed of a set of modular bioinformatic tools and workflows that are implemented in the Galaxy framework. Using the graphical Galaxy workflow editor, users with minimal computational skills can use existing Metavisitor workflows or adapt them to suit specific needs by adding or modifying analysis modules.
View Article and Find Full Text PDFMosquitoes of the Anopheles gambiae complex display strong preference for human bloodmeals and are major malaria vectors in Africa. However, their interaction with viruses or role in arbovirus transmission during epidemics has been little examined, with the exception of O'nyong-nyong virus, closely related to Chikungunya virus. Deep-sequencing has revealed different RNA viruses in natural insect viromes, but none have been previously described in the Anopheles gambiae species complex.
View Article and Find Full Text PDFTransposable element activity is repressed in the germline in animals by PIWI-interacting RNAs (piRNAs), a class of small RNAs produced by genomic loci mostly composed of TE sequences. The mechanism of induction of piRNA production by these loci is still enigmatic. We have shown that, in Drosophila melanogaster, a cluster of tandemly repeated P-lacZ-white transgenes can be activated for piRNA production by maternal inheritance of a cytoplasm containing homologous piRNAs.
View Article and Find Full Text PDFRNase P is a conserved endonuclease that processes the 5' trailer of tRNA precursors. We have isolated mutations in Rpp30, a subunit of RNase P, and find that these induce complete sterility in Drosophila females. Here, we show that sterility is not due to a shortage of mature tRNAs, but that atrophied ovaries result from the activation of several DNA damage checkpoint proteins, including p53, Claspin, and Chk2.
View Article and Find Full Text PDFSmall RNAs are potent regulators of gene expression. They also act in defense pathways against invading nucleic acids such as transposable elements or viruses. To counteract these defenses, viruses have evolved viral suppressors of RNA silencing (VSRs).
View Article and Find Full Text PDFThe optimal coordination of the transcriptional response of host cells to infection is essential for establishing appropriate immunological outcomes. In this context, the role of microRNAs (miRNAs)--important epigenetic regulators of gene expression--in regulating mammalian immune systems is increasingly well recognised. However, the expression dynamics of miRNAs, and that of their isoforms, in response to infection remains largely unexplored.
View Article and Find Full Text PDFArboviruses are transmitted by mosquitoes and other arthropods to humans and animals. The risk associated with these viruses is increasing worldwide, including new emergence in Europe and the Americas. Anopheline mosquitoes are vectors of human malaria but are believed to transmit one known arbovirus, o'nyong-nyong virus, whereas Aedes mosquitoes transmit many.
View Article and Find Full Text PDFThe tombusvirus P19 VSR (viral suppressor of RNA interference) binds siRNAs with high affinity, whereas the Flockhouse Virus (FHV) B2 VSR binds both long double-stranded RNA (dsRNA) and small interfering RNAs (siRNAs). Both VSRs are small proteins and function in plant and animal cells. Fusing a Nuclear Localization Signal (NLS) to the N-terminus shifts the localization of the VSR from cytoplasmic to nuclear, allowing researchers to specifically probe the subcellular distribution of siRNAs, and to investigate the function of nuclear and cytoplasmic siRNAs.
View Article and Find Full Text PDFHigh-throughput sequencing approaches opened the possibility to precisely map full populations of small RNAs to the genomic loci from which they originate. A bioinformatic approach revealed a strong tendency of sense and antisense piRNAs to overlap with each other over ten nucleotides and had a major role in understanding the mechanisms of piRNA biogenesis. Using similar approaches, it is possible to detect a tendency of sense and antisense siRNAs to overlap over 19 nucleotides.
View Article and Find Full Text PDF