Publications by authors named "Christophe Ancey"

Abstract: This paper shows how a conveyor belt setup can be used to study the dynamics of stationary granular flows. To visualise the flow within the granular bulk and, in particular, determine its composition and the velocity field, we used the refractive index matching (RIM) technique combined with particle tracking velocimetry and coarse-graining algorithms. Implementing RIM posed varied technical, design and construction difficulties.

View Article and Find Full Text PDF

A longstanding problem in the study of sediment transport in gravel-bed rivers is related to the physical mechanisms governing bed resistance and particle motion. To study this problem, we investigated the motion of coarse spherical glass beads entrained by a steady shallow turbulent water flow down a steep two-dimensional channel with a mobile bed. This experimental facility is the simplest representation of sediment transport on the laboratory scale, with the tremendous advantages that boundary conditions are perfectly controlled and a wealth of information can be obtained using imaging techniques.

View Article and Find Full Text PDF

The idea that snow avalanches might behave as granular flows, and thus be described as Coulomb fluid flows, came up very early in the scientific study of avalanches, but it is not until recently that field evidence has been provided that demonstrates the reliability of this idea. This paper aims to specify the bulk frictional behaviour of snow avalanches by seeking a universal friction law. Since the bulk friction coefficient cannot be measured directly in the field, the friction coefficient must be calibrated by adjusting the model outputs to closely match the recorded data.

View Article and Find Full Text PDF

Substantial variations in the particle flux are commonly observed in field measurements on gravel-bed rivers and in laboratory experiments mimicking river behavior on a smaller scale. These fluctuations can be explained by the natural variability of sediment supply and hydraulic conditions. We conducted laboratory experiments of particle transport down a two-dimensional inclined channel, for which the boundary conditions were properly controlled.

View Article and Find Full Text PDF

This paper investigates the two-dimensional rolling motion of a single large particle in a shallow water stream down a steep rough bed from both an experimental and a theoretical point of view. The experiment is prototypal of sediment transport on sloping beds. Two theoretical models are presented.

View Article and Find Full Text PDF

This paper experimentally and numerically investigates the two-dimensional saltating motion of a single large particle in a shallow water stream down a steep rough bed. The experiment is prototypical of sediment transport on sloping beds. Similar to the earlier experimental results on fine particles entrained by a turbulent stream, we found that most features of the particle motion were controlled by a dimensionless shear stress (also called the Shields number) N(Sh) defined as the ratio of the bottom shear stress exerted by the water flow to the buoyant weight of the particle (scaled by its cross-sectional area to obtain a stress).

View Article and Find Full Text PDF

This paper presents experimental results on dry granular flows down an inclined rough channel. Different flow regimes were identified depending on the Froude number. For Froude numbers exceeding a critical value (function of the channel slope), flow was characterized by a fairly linear velocity profile and a discharge equation in the form q varies with h(n) with q the flow rate per unit width, h the flow depth, and n an exponent in the range 2-3 (regime A).

View Article and Find Full Text PDF