Publications by authors named "Christoph Wunderlich"

RNA interference defends against RNA viruses and retro-elements within an organism's genome. It is triggered by duplex siRNAs, of which one strand is selected to confer sequence-specificity to the RNA induced silencing complex (RISC). In Drosophila, Dicer-2 (Dcr-2) and the double-stranded RNA binding domain (dsRBD) protein R2D2 form the RISC loading complex (RLC) and select one strand of exogenous siRNAs according to the relative thermodynamic stability of base-pairing at either end.

View Article and Find Full Text PDF

Ensuring the correct folding of RNA molecules in the cell is of major importance for a large variety of biological functions. Therefore, chaperone proteins that assist RNA in adopting their functionally active states are abundant in all living organisms. An important feature of RNA chaperone proteins is that they do not require an external energy source to perform their activity, and that they interact transiently and non-specifically with their RNA targets.

View Article and Find Full Text PDF

A ligand-observed H NMR relaxation experiment is introduced for measuring the binding kinetics of low-molecular-weight compounds to their biomolecular targets. We show that this approach, which does not require any isotope labeling, is applicable to ligand-target systems involving proteins and nucleic acids of variable molecular size. The experiment is particularly useful for the systematic investigation of low affinity molecules with residence times in the micro- to millisecond time regime.

View Article and Find Full Text PDF

RNA tertiary structure motifs are stabilized by a wide variety of hydrogen-bonding interactions. Protonated A and C nucleotides are normally not considered to be suitable building blocks for such motifs since their pK values are far from physiological pH. Here, we report the NMR solution structure of an in vitro selected GTP-binding RNA aptamer bound to GTP with an intricate tertiary structure.

View Article and Find Full Text PDF

In this work an improved stable isotope labeling protocol for nucleic acids is introduced. The novel building blocks eliminate/minimize homonuclear (13) C and (1) H scalar couplings thus allowing proton relaxation dispersion (RD) experiments to report accurately on the chemical exchange of nucleic acids. Using site-specific (2) H and (13) C labeling, spin topologies are introduced into DNA and RNA that make (1) H relaxation dispersion experiments applicable in a straightforward manner.

View Article and Find Full Text PDF

The B-DNA double helix can dynamically accommodate G-C and A-T base pairs in either Watson-Crick or Hoogsteen configurations. Here, we show that G-C(+) (in which + indicates protonation) and A-U Hoogsteen base pairs are strongly disfavored in A-RNA. As a result,N(1)-methyladenosine and N(1)-methylguanosine, which occur in DNA as a form of alkylation damage and in RNA as post-transcriptional modifications, have dramatically different consequences.

View Article and Find Full Text PDF

Stable isotope labeling is central to NMR studies of nucleic acids. Development of methods that incorporate labels at specific atomic positions within each nucleotide promises to expand the size range of RNAs that can be studied by NMR. Using recombinantly expressed enzymes and chemically synthesized ribose and nucleobase, we have developed an inexpensive, rapid chemo-enzymatic method to label ATP and GTP site specifically and in high yields of up to 90%.

View Article and Find Full Text PDF

Given that Ribonucleic acids (RNAs) are a central hub of various cellular processes, methods to synthesize these RNAs for biophysical studies are much needed. Here, we showcase the applicability of 6-(13)C-pyrimidine phosphoramidites to introduce isolated (13)C-(1)H spin pairs into RNAs up to 40 nucleotides long. The method allows the incorporation of 6-(13)C-uridine and -cytidine residues at any desired position within a target RNA.

View Article and Find Full Text PDF

Nucleolytic ribozymes catalyze site-specific cleavage of their phosphodiester backbones. A minimal version of the twister ribozyme is reported that lacks the phylogenetically conserved stem P1 while retaining wild-type activity. Atomic mutagenesis revealed that nitrogen atoms N1 and N3 of the adenine-6 at the cleavage site are indispensable for cleavage.

View Article and Find Full Text PDF

The structures of RNA-aptamer-ligand complexes solved in the last two decades were instrumental in realizing the amazing potential of RNA for forming complex tertiary structures and for molecular recognition of small molecules. For GTP as ligand the sequences and secondary structures for multiple families of aptamers were reported which differ widely in their structural complexity, ligand affinity and ligand functional groups involved in RNA-binding. However, for only one of these families the structure of the GTP-RNA complex was solved.

View Article and Find Full Text PDF

An NMR-based approach to characterizing the binding kinetics of ligand molecules to biomolecules, like RNA or proteins, by ligand-detected Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments is described. A (15)N-modified preQ1 ligand is used to acquire relaxation dispersion experiments in the presence of low amounts of the Fsu class I preQ1 aptamer RNA, and increasing ligand concentrations to probe the RNA small molecule interaction. Our experimental data strongly support the conformational selection mechanism postulated.

View Article and Find Full Text PDF

Protein-protein interactions are of utmost importance to an understanding of biological phenomena since non-covalent and therefore reversible couplings between basic proteins leads to the formation of complex regulatory and adaptive molecular systems. Such systems are capable of maintaining their integrity and respond to external stimuli, processes intimately related to living organisms. These interactions, however, span a wide range of dissociation constants, from sub-nanomolar affinities in tight complexes to high-micromolar or even millimolar affinities in weak, transiently formed protein complexes.

View Article and Find Full Text PDF

The archaeal protein L7Ae forms part of a protein complex in the ribosome that specifically recognizes and binds to kink-turn RNA. In this complex, L7Ae directly interacts with the oligonucleotide and creates a functional arrangement for site-specific 2'-O-methylation. We report the solution NMR backbone assignment of Methanocaldococcus jannaschii L7Ae (117 residues, 12.

View Article and Find Full Text PDF

In this work, we present a novel 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) radical phosphoramidite building block, which can be attached to the 5'-terminus of nucleic acids. To investigate the paramagnetic relaxation enhancement (PRE) emanating from this radical center, we incorporated the TEMPO label into various types of RNAs. We measured proton PREs for selectively (13)C-isotope labeled nucleotides to derive long-range distance restraints in a short 15 nucleotide stem-loop model system, underscoring the potential of the 5'-TEMPO tag to determine long-range distance restraints for solution structure determination.

View Article and Find Full Text PDF

We present a (13)C-based isotope labeling protocol for RNA. Using (6-(13)C)pyrimidine phosphoramidite building blocks, site-specific labels can be incorporated into a target RNA via chemical oligonucleotide solid-phase synthesis. This labeling scheme is particularly useful for studying milli- to microsecond dynamics via NMR spectroscopy, as an isolated spin system is a crucial prerequisite to apply Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion type experiments.

View Article and Find Full Text PDF

Background: Rodents without a functional endothelin B (ETB) receptor develop salt-sensitive hypertension. The underlying mechanisms, however, are so far unknown. The ETB receptor is involved in endothelial function by modulating the activity of the endothelial nitric oxide synthesis as well as contributing to the control of endothelial prostacyclin synthesis.

View Article and Find Full Text PDF