The cytokine interleukin 6 (IL-6) signals via the IL-6 α-receptor (IL-6Rα or IL-6R) in complex with the gp130 β-receptor. Cell type restricted expression of the IL-6R limits the action of IL-6 mainly to hepatocytes and some immune cells. Here, we show that IL-6 also binds to the IL-11 α receptor (IL-11Rα or IL-11R) and induces signaling via IL-11R:gp130 complexes, albeit with a lower affinity compared to IL-11.
View Article and Find Full Text PDFCiliary neurotrophic factor (CNTF) activates cells via the non-signaling α-receptor CNTF receptor (CNTFR) and the two signaling β-receptors glycoprotein 130 (gp130) and leukemia inhibitory factor receptor (LIFR). The CNTF derivate, Axokine, was protective against obesity and insulin resistance, but clinical development was halted by the emergence of CNTF antibodies. The chimeric cytokine IC7 used the framework of interleukin (IL-)6 with the LIFR-binding site from CNTF to activate cells via IL-6R:gp130:LIFR complexes.
View Article and Find Full Text PDFAt least 0.5% of people in the Western world develop inflammatory bowel disease (IBD). While antibodies that block tumor necrosis factor (TNF) α and Interleukin (IL-)23 have been approved for the treatment of IBD, IL-6 antibodies failed in the phase II clinical trial due to non-tolerable side effects.
View Article and Find Full Text PDFSynthetic cytokine receptors can modulate cellular functions based on an artificial ligand to avoid off-target and/or unspecific effects. However, ligands that can modulate receptor activity so far have not been used clinically because of unknown toxicity and immunity against the ligands. Here, we developed a fully synthetic cytokine/cytokine receptor pair based on the antigen-binding domain of the respiratory syncytial virus-approved mAb Palivizumab as a synthetic cytokine and a set of anti-idiotype nanobodies (AIP) as synthetic receptors.
View Article and Find Full Text PDFInterleukin-6 (IL-6)-type cytokines not only have key immunomodulatory functions that affect the pathogenesis of diseases such as autoimmune diseases, chronic inflammatory conditions, and cancer, but also fulfill important homeostatic tasks. Even though the pro-inflammatory arm has hindered the development of therapeutics based on natural-like IL-6-type cytokines to date, current synthetic trends might pave the way to overcome these limitations and eventually lead to immune-inert designer cytokines to aid type 2 diabetes and brain injuries. Those synthetic biology approaches include mutations, fusion proteins, and inter-cytokine swapping, and resulted in IL-6-type cytokines with altered receptor affinities, extended target cell profiles, and targeting of non-natural cytokine receptor complexes.
View Article and Find Full Text PDFHealth and disease are directly related to the RTK-RAS-MAPK signalling cascade. After more than three decades of intensive research, understanding its spatiotemporal features is afflicted with major conceptual shortcomings. Here we consider how the compilation of a vast array of accessory proteins may resolve some parts of the puzzles in this field, as they safeguard the strength, efficiency and specificity of signal transduction.
View Article and Find Full Text PDFRAS effectors specifically interact with GTP-bound RAS proteins to link extracellular signals to downstream signaling pathways. These interactions rely on two types of domains, called RAS-binding (RB) and RAS association (RA) domains, which share common structural characteristics. Although the molecular nature of RAS-effector interactions is well-studied for some proteins, most of the RA/RB-domain-containing proteins remain largely uncharacterized.
View Article and Find Full Text PDFCleavage of amyloid precursor protein (APP) by BACE-1 (β-site APP cleaving enzyme 1) is the rate-limiting step in amyloid-β (Aβ) production and a neuropathological hallmark of Alzheimer's disease (AD). Despite decades of research, mechanisms of amyloidogenic APP processing remain highly controversial. Here, we show that in neurons, APP processing and Aβ production are controlled by the protein complex-2 (AP-2), an endocytic adaptor known to be required for APP endocytosis.
View Article and Find Full Text PDF