Publications by authors named "Christoph Wille"

Trauma is the leading cause of death in individuals under 44 years of age. Thorax trauma (TxT) is strongly associated with trauma-related death, an unbalanced innate immune response, sepsis, acute respiratory distress syndrome, and multiple organ dysfunction. It is shown that different in vivo traumata, such as TxT or an in vitro polytrauma cytokine cocktail trigger secretion of small extracellular nanovesicles (sEVs) from endothelial cells with pro-inflammatory cargo.

View Article and Find Full Text PDF
Article Synopsis
  • Neutrophils play a crucial role in the innate immune response and the body's reaction to physical injuries, but their excessive presence at injury sites can lead to adverse effects.
  • The study reveals that protein kinase D (PKD) is essential for regulating neutrophil movement by influencing Cofilin and actin dynamics, particularly in response to chemotactic signals.
  • Inhibiting PKD with specific small molecules increases Cofilin activity and alters neutrophil flexibility, leading to reduced movement and a weaker response in models of trauma, suggesting that targeting PKD could help modulate neutrophil activity post-injury.
View Article and Find Full Text PDF

TALE-homeodomain proteins function as components of heteromeric complexes that contain one member each of the PBC and MEIS/PREP subclasses. We recently showed that MEIS2 cooperates with the neurogenic transcription factor PAX6 in the control of adult subventricular zone (SVZ) neurogenesis in rodents. Expression of the PBC protein PBX1 in the SVZ has been reported, but its functional role(s) has not been investigated.

View Article and Find Full Text PDF

Vesicle formation and fission are tightly regulated at the trans-Golgi network (TGN) during constitutive secretion. Two major protein families regulate these processes: members of the adenosyl-ribosylation factor family of small G-proteins (ARFs) and the protein kinase D (PKD) family of serine/threonine kinases. The functional relationship between these two key regulators of protein transport from the TGN so far is elusive.

View Article and Find Full Text PDF

Highly invasive pancreatic tumors are often recognized in late stages due to a lack of clear symptoms and pose major challenges for treatment and disease management. Broad-band Protein Kinase D (PKD) inhibitors have recently been proposed as additional treatment option for this disease. PKDs are implicated in the control of cancer cell motility, angiogenesis, proliferation and metastasis.

View Article and Find Full Text PDF

Pancreatic cancer cell invasion, metastasis, and angiogenesis are major challenges for the development of novel therapeutic strategies. Protein kinase D (PKD) isoforms are involved in controlling tumor cell motility, angiogenesis, and metastasis. In particular PKD2 expression is up-regulated in pancreatic cancer, whereas PKD1 expression is lowered.

View Article and Find Full Text PDF