The seamless integration of electronics with living matter requires advanced materials with programmable biological and engineering properties. Here electrochemical methods to assemble semi-synthetic hydrogels directly on electronically conductive surfaces are explored. Hydrogels consisting of poly (ethylene glycol) (PEG) and heparin building blocks are polymerized by spatially controlling the click reaction between their thiol and maleimide moieties.
View Article and Find Full Text PDFNeuromuscular interfaces are required to translate bioelectronic technologies for application in clinical medicine. Here, by leveraging the robotically controlled ink-jet deposition of low-viscosity conductive inks, extrusion of insulating silicone pastes and in situ activation of electrode surfaces via cold-air plasma, we show that soft biocompatible materials can be rapidly printed for the on-demand prototyping of customized electrode arrays well adjusted to specific anatomical environments, functions and experimental models. We also show, with the monitoring and activation of neuronal pathways in the brain, spinal cord and neuromuscular system of cats, rats and zebrafish, that the printed bioelectronic interfaces allow for long-term integration and functional stability.
View Article and Find Full Text PDFTissue transglutaminase (TGase 2) is proposed to be important for biomaterial-tissue interactions due to its presence and versatile functions in the extracellular environment. TGase 2 catalyzes the cross-linking of proteins through its Ca-dependent acyltransferase activity. Moreover, it enhances the interactions between fibronectin and integrins, which in turn mediates the adhesion, migration, and motility of the cells.
View Article and Find Full Text PDFElectrically conductive materials that mimic physical and biological properties of tissues are urgently required for seamless brain-machine interfaces. Here, a multinetwork hydrogel combining electrical conductivity of 26 S m , stretchability of 800%, and tissue-like elastic modulus of 15 kPa with mimicry of the extracellular matrix is reported. Engineering this unique set of properties is enabled by a novel in-scaffold polymerization approach.
View Article and Find Full Text PDFThe EF-hand type calcium-binding protein S100A12 exerts numerous intra- and extracellular functions of (patho)physiological relevance. Therefore, receptors of S100A12 are of high interest for research and clinical applications. Beside the extensively studied receptor for advanced glycation endproducts (RAGE), G-protein coupled receptors and more recently, scavenger receptors are suggested to be putative S100A12 receptors.
View Article and Find Full Text PDFHydrogels based on gelatin have evolved as promising multifunctional biomaterials. Gelatin is crosslinked with lysine diisocyanate ethyl ester (LDI) and the molar ratio of gelatin and LDI in the starting material mixture determines elastic properties of the resulting hydrogel. In order to investigate the clinical potential of these biopolymers, hydrogels with different ratios of gelatin and diisocyanate (3-fold (G10_LNCO3) and 8-fold (G10_LNCO8) molar excess of isocyanate groups) were subcutaneously implanted in mice (uni- or bilateral implantation).
View Article and Find Full Text PDFThis study aimed at in vivo visualization of cyclooxygenase-2 (COX-2) by optical imaging using a representative compound of a class of autofluorescent 2,3-diaryl-substituted indole-based selective COX-2 inhibitors (2,3-diaryl-indole coxibs). COX-2 was successfully visualized in mice models with phorbol myristate ester (TPA)-induced inflammation or bearing xenografted human melanoma cells by 2-[4-(aminosulfonyl)phenyl]-3-(4-methoxyphenyl)-1H-indole (C1). COX-2 protein expression in both TPA-induced inflammatory sites and human melanoma xenografts was confirmed by immunoblotting.
View Article and Find Full Text PDFHydrogels prepared from gelatin and lysine diisocyanate ethyl ester provide tailorable elastic properties and degradation behavior. Their interaction with human aortic endothelial cells (HAEC) as well as human macrophages (Mɸ) and granulocytes (Gɸ) were explored. The experiments revealed a good biocompatibility, appropriate cell adhesion, and cell infiltration.
View Article and Find Full Text PDFThis study aimed at visualization of cyclooxygenase-2 (COX-2) protein expression in melanoma cells by confocal laser induced cryofluorescence microscopy using 4-(3-(4-methoxyphenyl)-1H-indol-2-yl)benzene-sulfonamide (C1) representative for a novel class of autofluorescent 2,3-diarylsubstituted indole-based selective COX-2 inhibitors. COX-2 expression was measured in human melanoma cell lines A2058 and MelJuso by immunocytochemistry and immunoblotting. Cellular uptake experiments using varying C1 concentrations down to 0.
View Article and Find Full Text PDF