Semiconductor saturable absorber mirrors (SESAMs) are key devices for passive mode locking of numerous laser types and have been implemented for a variety of operational wavelengths ranging from 800 nm to 2400 nm. However, for 1560 nm the fabrication of SESAMs based on the standard AlAs/GaAs material system requires highly strained InGaAs absorber layers, which reduce the device efficiency and compromise fragile long-term performance. Here, we present SESAMs for ultrashort pulse generation at 1560 nm that are grown entirely lattice-matched to InP and thus have the potential for less structural defects and a higher operational lifetime.
View Article and Find Full Text PDFWe present the generation of optical pulses with a spectral range of 500-2400 nm and energies up to 10 µJ at 1 kHz repetition rate by cascaded second-order nonlinear interaction of few-cycle pulses in beta-barium borate (BBO). Numerical simulations with a 1D+time split-step model are performed to explain the experimental findings. The large bandwidth and smooth spectral amplitude of the resulting pulses make them an ideal seed for ultra-broadband optical parametric chirped pulse amplification and an attractive source for spectroscopic applications.
View Article and Find Full Text PDFOn the quest towards reaching petawatt-scale peak power light pulses with few-cycle duration, optical parametric chirped pulse amplification (OPCPA) pumped on a time scale of a few picoseconds represents a very promising route. Here we present an experimental demonstration of few-ps OPCPA in DKDP, in order to experimentally verify the feasibility of the scheme. Broadband amplification was observed in the wavelength range of 830-1310 nm.
View Article and Find Full Text PDFIn an optically synchronized short-pulse optical-parametric chirped-pulse amplification (OPCPA) system, we observe a few-100 fs-scale timing jitter. With an active timing stabilization system slow fluctuations are removed and the timing jitter can be reduced to 100 fs standard deviation (Std). As the main source for the timing fluctuations we could identify air turbulence in the stretcher-compressor setup inside the chirped pulse amplification (CPA) pump chain.
View Article and Find Full Text PDFWe present a chirped pulse amplification (CPA) system based on diode-pumped Yb:YAG. The stretched ns-pulses are amplified and have been compressed to less than 900 fs with an energy of 200 mJ and a repetition rate of 10 Hz. This system is optically synchronized with a broadband seed laser and therefore ideally suited for pumping optical parametric chirped pulse amplification (OPCPA) stages on a ps-timescale.
View Article and Find Full Text PDFWe present three-dimensional simulations of optical-parametric chirped-pulse amplification stages for a few-cycle petawatt-class laser. The simulations take into account the effects of depletion, diffraction, walk-off, quantum noise, and the nonlinear refractive index (n(2)). In the absence of n(2) effects, we show these stages can generate 3.
View Article and Find Full Text PDF