In this paper, we demonstrate an active and fast control of the charge state and hence of the optical and electronic properties of single and near-surface nitrogen-vacancy centres (NV centres) in diamond. This active manipulation is achieved by using a two-dimensional Schottky-diode structure from diamond, i.e.
View Article and Find Full Text PDFThe negatively charged nitrogen-vacancy (NV) centre exhibits outstanding optical and spin properties and thus is very attractive for applications in quantum optics. Up to now an active control of the charge state of near-surface NV centres is difficult and the centres switch in an uncontrolled way between different charge states. In this work, we demonstrate an active control of the charge state of NV centres (implanted 7 nm below the surface) by using an in-plane Schottky diode geometry from aluminium on hydrogen terminated diamond in combination with confocal micro-photoluminescence measurements.
View Article and Find Full Text PDF