Publications by authors named "Christoph Schaniel"

Article Synopsis
  • A study investigates how drug-induced gene expression profiles can reveal mechanisms of cardiotoxicity in FDA-approved tyrosine kinase inhibitors (TKIs) using human stem cell-derived heart cells.
  • The research employs singular value decomposition to detect drug-specific patterns in cells from various healthy individuals, highlighting affected cellular pathways like energy metabolism and contractile functions.
  • The findings suggest that integrating mRNA expression data with genomic and pathway information can create comprehensive signatures for cardiotoxicity, aiding in drug development and personalized treatment strategies.
View Article and Find Full Text PDF

Background: Treatment strategies for Crohn's disease (CD) suppress diverse inflammatory pathways but many patients remain refractory to treatment. Autologous hematopoietic stem cell transplantation (SCT) has emerged as a therapy for medically refractory CD. SCT was developed to rescue cancer patients from myelosuppressive chemotherapy but its use for CD and other immune diseases necessitates reimagining SCT as a cellular therapy that restores appropriately responsive immune cell populations from hematopoietic progenitors in the stem cell autograft (i.

View Article and Find Full Text PDF

Ensuring the safety of parenteral drugs before injection into patients is of utmost importance. New regulations around the globe and the need to refrain from using animals however, have highlighted the need for new cell sources to be used in next-generation bioassays to detect the entire spectrum of possible contaminating pyrogens. Given the current drawbacks of the Monocyte-Activation-Test (MAT) with respect to the use of primary peripheral blood mono-nuclear cells or the use of monocytic cell lines, we here demonstrate the manufacturing of sensor monocytes/macrophages from human induced pluripotent stem cells (iMonoMac), which are fully defined and superior to current cell products.

View Article and Find Full Text PDF

Osteogenic differentiation is essential for bone development and metabolism, but the underlying gene regulatory networks have not been well investigated. We differentiated mesenchymal stem cells, derived from 20 human induced pluripotent stem cell lines, into preosteoblasts and osteoblasts, and performed systematic RNA-seq analyses of 60 samples for differential gene expression. We noted a highly significant correlation in expression patterns and genomic proximity among transcription factor (TF) and long noncoding RNA (lncRNA) genes.

View Article and Find Full Text PDF

Tyrosine kinase inhibitor drugs (TKIs) are highly effective cancer drugs, yet many TKIs are associated with various forms of cardiotoxicity. The mechanisms underlying these drug-induced adverse events remain poorly understood. We studied mechanisms of TKI-induced cardiotoxicity by integrating several complementary approaches, including comprehensive transcriptomics, mechanistic mathematical modeling, and physiological assays in cultured human cardiac myocytes.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) have great value in cell therapies. The MSC therapies have many challenges due to its inconsistent potency and limited quantity. Here, we report a strategy to generate induced MSCs (iMSCs) by directly reprogramming human peripheral blood mononuclear cells (PBMCs) with OCT4, SOX9, MYC, KLF4, and BCL-XL using a nonintegrating episomal vector system.

View Article and Find Full Text PDF

The regenerative potential of human hematopoietic stem cells (HSCs) is functionally defined by their ability to provide life-long blood cell production and to repopulate myeloablated allogeneic transplant recipients. The expansion of HSC numbers is dependent not only on HSC divisions but also on a coordinated adaptation of HSCs to metabolic stress. These variables are especially critical during the ex vivo culture of HSCs with cytokine combinations, which frequently results in HSC exhaustion.

View Article and Find Full Text PDF
Article Synopsis
  • A new library of human induced pluripotent stem cell (hiPSC) lines has been created from 40 healthy individuals aged 22 to 61, providing a diverse resource for studying normal human development and diseases.
  • These hiPSC lines maintain the genetic identity of their parent cells and exhibit characteristics typical of pluripotent stem cells, making them reliable for research purposes.
  • The library includes extensive data like whole-genome sequencing and analysis of disease genes, enhancing its potential for in-depth studies on human biology and drug responses.
View Article and Find Full Text PDF

COVID-19 affects multiple organs. Clinical data from the Mount Sinai Health System show that substantial numbers of COVID-19 patients without prior heart disease develop cardiac dysfunction. How COVID-19 patients develop cardiac disease is not known.

View Article and Find Full Text PDF

Background Aims: Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapy for a wide range of malignant and genetic disorders of the hematopoietic and immune systems. Umbilical cord blood (UCB) is a readily available source of stem cells for allo-HSCT, but the small fixed number of hematopoietic stem and progenitor cells (HSPCs) found in a single unit limits its widespread use in adult recipients. The authors have previously reported that culturing UCB-CD34 cells in serum-free media supplemented with a combination of cytokines and the histone deacetylase inhibitor valproic acid (VPA) led to expansion of the numbers of functional HSPCs.

View Article and Find Full Text PDF

expansion strategies of human hematopoietic stem cell (HSC) grafts with suboptimal stem cell dose have emerged as promising strategies for improving outcomes of HSC transplantation in patients with hematological malignancies. While exposure of HSCs to cultures expands the number of phenotypically identifiable HSCs, it frequently alters the transcriptomic and metabolic profiles, therefore, compromising their long-term (LT) hematopoietic reconstitution capacity. Within the heterogeneous pool of expanded HSCs, the precise phenotypic, transcriptomic and metabolic profile and thus, the identity of HSCs that confer LT repopulation potential remains poorly described.

View Article and Find Full Text PDF

COVID-19 affects multiple organs. Clinical data from the Mount Sinai Health System shows that substantial numbers of COVID-19 patients without prior heart disease develop cardiac dysfunction. How COVID-19 patients develop cardiac disease is not known.

View Article and Find Full Text PDF

Umbilical cord blood (UCB) units provide an alternative source of human hematopoietic stem cells (HSCs) for patients who require allogeneic stem cell transplantation but lack a matched donor. However, the limited number of HSCs within each UCB unit remains a major challenge for their use in regenerative medicine and HSC transplantation in adults. Efficient expansion of human HSCs in ex vivo cultures initiated with CD34 cells isolated from UCBs can overcome this limitation.

View Article and Find Full Text PDF

Hemoglobin production during mammalian development is characterized by temporal switches of the genes coding for the α- and ß-globin chains. Defects in this controlled process can lead to hemoglobinapathies such as sickle cell disease and ß-thalassemia. The ability of human embryonic stem cells (hESC) to proceed through hematopoiesis could provide a clinically useful source of red blood cells.

View Article and Find Full Text PDF

The induction of hematopoiesis in various cell types via transcription factor (TF) reprogramming has been demonstrated by several strategies. The eventual goal of these approaches is to generate a product for unmet needs in hematopoietic cell transplantation therapies. The most successful strategies hew closely to clues provided from developmental hematopoiesis in terms of factor expression and environmental cues.

View Article and Find Full Text PDF

A multitude of signals are coordinated to maintain self-renewal in embryonic stem cells (ESCs). To unravel the essential internal and external signals required for sustaining the ESC state, we expand upon a set of ESC pluripotency-associated phosphoregulators (PRs) identified previously by short hairpin RNA (shRNA) screening. In addition to the previously described Aurka, we identify 4 additional PRs (Bub1b, Chek1, Ppm1g, and Ppp2r1b) whose depletion compromises self-renewal and leads to consequent differentiation.

View Article and Find Full Text PDF

Osteosarcoma (OS), the most common primary bone tumor, is highly metastatic with high chemotherapeutic resistance and poor survival rates. Using induced pluripotent stem cells (iPSCs) generated from Li-Fraumeni syndrome (LFS) patients, we investigate an oncogenic role of secreted frizzled-related protein 2 (SFRP2) in p53 mutation-associated OS development. Interestingly, we find that high SFRP2 expression in OS patient samples correlates with poor survival.

View Article and Find Full Text PDF

The advent of induced pluripotent stem cells (iPSCs) together with recent advances in genome editing, microphysiological systems, tissue engineering and xenograft models present new opportunities for the investigation of hematological diseases and cancer in a patient-specific context. Here we review the progress in the field and discuss the advantages, limitations, and challenges of iPSC-based malignancy modeling. We will also discuss the use of iPSCs and its derivatives as cellular sources for drug target identification, drug development and evaluation of pharmacological responses.

View Article and Find Full Text PDF

Fibroblasts of a 28-year-old female with Marfan syndrome (MFS) due to a heterozygous FBN1 c.4082G>A mutation were reprogrammed using the Sendai virus delivery method. The established human induced pluripotent stem cell (hiPSC) line named ISMMSi002-B expresses pluripotency markers, has a normal karyotype, carries the specific FBN1 mutation and is able to differentiate into three germ layers in vitro.

View Article and Find Full Text PDF

We have generated a MIXL1-eGFP reporter human embryonic stem cell (hESC) line using TALEN-based genome engineering. This line accurately traces endogenous MIXL1 expression via an eGFP reporter to mesendodermal precursor cells. The utility of the MIXL1-eGFP reporter hESC line lies in the prospective isolation, lineage tracing, and developmental and mechanistic studies of MIXL1 cell populations.

View Article and Find Full Text PDF

ZFP57 maintains genomic imprinting in mouse embryos and ES cells. To test its roles during iPS reprogramming,we derived iPS clones by utilizing retroviral infection to express reprogramming factors in mouse MEF cells. After analyzing four imprinted regions, we found that parentally derived DNA methylation imprint was largely maintained in the iPS clones with Zfp57 but missing in those without maternal or zygotic Zfp57.

View Article and Find Full Text PDF

Definitive hematopoiesis emerges via an endothelial-to-hematopoietic transition in the embryo and placenta; however, the precursor cells to hemogenic endothelium are not defined phenotypically. We previously demonstrated that the induction of hematopoietic progenitors from fibroblasts progresses through hemogenic precursors that are Prom1(+)Sca1(+)CD34(+)CD45(-) (PS34CD45(-)). Guided by these studies, we analyzed mouse placentas and identified a population with this phenotype.

View Article and Find Full Text PDF

Somatic PTPN11 mutations cause juvenile myelomonocytic leukemia (JMML). Germline PTPN11 defects cause Noonan syndrome (NS), and specific inherited mutations cause NS/JMML. Here, we report that hematopoietic cells differentiated from human induced pluripotent stem cells (hiPSCs) harboring NS/JMML-causing PTPN11 mutations recapitulated JMML features.

View Article and Find Full Text PDF

Background: Chemical or small interfering (si) RNA screens measure the effects of many independent experimental conditions, each applied to a population of cells (e.g., all of the cells in a well).

View Article and Find Full Text PDF

Tbx3, a member of the T-box family, plays important roles in development, stem cells, nuclear reprogramming, and cancer. Loss of Tbx3 induces differentiation in mouse embryonic stem cells (mESCs). However, we show that mESCs exist in an alternate stable pluripotent state in the absence of Tbx3.

View Article and Find Full Text PDF