Publications by authors named "Christoph Reese"

Poxviruses, such as vaccinia virus (VV), replicate their DNA in endoplasmic-reticulum-enclosed cytoplasmic sites. Here, we compare the dynamics of the VV replication sites with those of the attenuated strain, modified VV Ankara (MVA). By live-cell imaging, small, early replication sites of both viruses undergo motility typical of microtubule (MT)-motor-mediated movement.

View Article and Find Full Text PDF

Fusion pore opening and expansion are considered the most energy-demanding steps in viral fusion. Whether this also applies to soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor (SNARE)- and Rab-dependent fusion events has been unknown. We have addressed the problem by characterizing the effects of lysophosphatidylcholine (LPC) and other late-stage inhibitors on lipid mixing and pore opening during vacuole fusion.

View Article and Find Full Text PDF

The question concerning whether all membranes fuse according to the same mechanism has yet to be answered satisfactorily. During fusion of model membranes or viruses, membranes dock, the outer membrane leaflets mix (termed hemifusion), and finally the fusion pore opens and the contents mix. Viral fusion proteins consist of a membrane-disturbing 'fusion peptide' and a helical bundle that pin the membranes together.

View Article and Find Full Text PDF

Pore models of membrane fusion postulate that cylinders of integral membrane proteins can initiate a fusion pore after conformational rearrangement of pore subunits. In the fusion of yeast vacuoles, V-ATPase V0 sectors, which contain a central cylinder of membrane integral proteolipid subunits, associate to form a transcomplex that might resemble an intermediate postulated in some pore models. We tested the role of V0 sectors in vacuole fusion.

View Article and Find Full Text PDF