Publications by authors named "Christoph Petz"

Computational fluid dynamics (CFD) methods based on three-dimensional (3D) vessel reconstructions have recently been shown to provide prognostically relevant hemodynamic data. However, the geometry reconstruction and the assessment of clinically relevant hemodynamic parameters may depend on the used imaging modality. In this study, the silicon model of the left coronary artery (LCA) was acquired with a biplane angiography.

View Article and Find Full Text PDF

To date, no ideal heart valve prosthesis for the replacement of a diseased natural valve or for use in ventricular assist devices exists. Valves still cause thromboembolic complications originating from thrombus formations in the valve's stagnant and recirculation zones. Optimization of valve design requires detailed flow field investigations.

View Article and Find Full Text PDF

Computational fluid dynamics (CFD) methods based on in vivo three-dimensional vessel reconstructions have recently been shown to provide prognostically relevant hemodynamic data. However, the geometry reconstruction and the assessment of clinically relevant hemodynamic parameters may depend on the used imaging modality. This study compares geometric reconstruction and calculated wall shear stress (WSS) values based on magnetic resonance imaging (MRI) and computed tomography (CT).

View Article and Find Full Text PDF

Until today, no ideal heart valve prosthesis for the replacement of a diseased natural valve or for use in ventricular assist devices exists. Valves still cause thromboembolic complications originating from thrombus formations in the valve's stagnant zones. Optimization of valve design involves avoiding stagnation zones and zones of high shear stresses.

View Article and Find Full Text PDF