Publications by authors named "Christoph Pedain"

The PRECISE study used convection enhanced delivery (CED) to infuse IL13-PE38QQR in patients with recurrent glioblastoma multiforme (GBM) and compared survival to Gliadel Wafers (GW). The objectives of this retrospective evaluation were to assess: (1) catheter positioning in relation to imaging features and (2) to examine the potential impact of catheter positioning, overall catheter placement and imaging features on long term clinical outcome in the PRECISE study. Catheter positioning and overall catheter placement were scored and used as a surrogate of adequate placement.

View Article and Find Full Text PDF

Convection-enhanced delivery (CED) of cintredekin besudotox (CB) was compared with Gliadel wafers (GW) in adult patients with glioblastoma multiforme (GBM) at first recurrence. Patients were randomized 2:1 to receive CB or GW. CB (0.

View Article and Find Full Text PDF

Object: Convection-enhanced delivery (CED) is a novel intracerebral drug delivery technique with considerable promise for delivering therapeutic agents throughout the CNS. Despite this promise, Phase III clinical trials employing CED have failed to meet clinical end points. Although this may be due to inactive agents or a failure to rigorously validate drug targets, the authors have previously demonstrated that catheter positioning plays a major role in drug distribution using this technique.

View Article and Find Full Text PDF

Convection-enhanced delivery (CED) is a novel drug delivery technique that uses positive infusion pressure to deliver therapeutic agents directly into the interstitial spaces of the brain. Despite the promise of CED, clinical trials have demonstrated that target-tissue anatomy and patient-specific physiology play a major role in drug distribution using this technique. In this study, we retrospectively tested the ability of a software algorithm using MR diffusion tensor imaging to predict patient-specific drug distributions by CED.

View Article and Find Full Text PDF

Objective: Convection-enhanced delivery is a promising approach to intracerebral drug delivery in which a fluid pressure gradient is used to infuse therapeutic macromolecules through an indwelling catheter into the interstitial spaces of the brain. Our purpose was to test the hypothesis that hyperintense signal changes on T2-weighted images produced by such infusions can be used to track drug distribution.

Subjects And Methods: Seven adults with recurrent malignant glioma underwent concurrent intracerebral infusions of the tumor-targeted cytotoxin cintredekin besudotox and 123I-labeled human serum albumin.

View Article and Find Full Text PDF

Objective: Convection-enhanced delivery (CED) holds tremendous potential for drug delivery to the brain. However, little is known about the volume of distribution achieved within human brain tissue or how target anatomy and catheter positioning influence drug distribution. The primary objective of this study was to quantitatively describe the distribution of a high molecular weight agent by CED relative to target anatomy and catheter position in patients with malignant gliomas.

View Article and Find Full Text PDF

Object: Convection-enhanced delivery (CED) is an increasingly used novel local/regional delivery method targeted directly to tissue. It relies on a continuous pressure gradient for distribution of therapeutic agents into the interstitial space, with administration of the infusate over a few days. Cintredekin besudotox (also known as IL13- PE38QQR) is a recombinant chimeric cytotoxin consisting of interleukin-13 and a truncated exotoxin produced by the Pseudomonas aeruginosa bacterium, which targets malignant glioma cells.

View Article and Find Full Text PDF

Convection-enhanced delivery (CED) is the continuous injection under positive pressure of a fluid containing a therapeutic agent. This technique was proposed and introduced by researchers from the US National Institutes of Health (NIH) by the early 1990s to deliver drugs that would otherwise not cross the blood-brain barrier into the parenchyma and that would be too large to diffuse effectively over the required distances were they simply deposited into the tissue. Despite the many years that have elapsed, this technique remains experimental because of both the absence of approved drugs for intraparenchymal delivery and the difficulty of guaranteed delivery to delineated regions of the brain.

View Article and Find Full Text PDF