Publications by authors named "Christoph P Stahlmann"

Reduced sulfatide level is found in Alzheimer's disease (AD) patients. Here, we demonstrate that amyloid precursor protein (APP) processing regulates sulfatide synthesis and vice versa. Different cell culture models and transgenic mice models devoid of APP processing or in particular the APP intracellular domain (AICD) reveal that AICD decreases Gal3st1/CST expression and subsequently sulfatide synthesis.

View Article and Find Full Text PDF

One of the major pathological hallmarks of Alzheimer´s disease (AD) is an accumulation of amyloid-β (Aβ) in brain tissue leading to formation of toxic oligomers and senile plaques. Under physiological conditions, a tightly balanced equilibrium between Aβ-production and -degradation is necessary to prevent pathological Aβ-accumulation. Here, we investigate the molecular mechanism how insulin-degrading enzyme (IDE), one of the major Aβ-degrading enzymes, is regulated and how amyloid precursor protein (APP) processing and Aβ-degradation is linked in a regulatory cycle to achieve this balance.

View Article and Find Full Text PDF

Omega-3 polyunsaturated fatty acids (PUFAs) have been proposed to be highly beneficial in Alzheimer's disease (AD). AD pathology is closely linked to an overproduction and accumulation of amyloid-β (Aβ) peptides as extracellular senile plaques in the brain. Total Aβ levels are not only dependent on its production by proteolytic processing of the amyloid precursor protein (APP), but also on Aβ-clearance mechanisms, including Aβ-degrading enzymes.

View Article and Find Full Text PDF

One of the characteristics of Alzheimer´s disease (AD) is an increased amyloid load and an enhanced level of reactive oxidative species (ROS). Vitamin E has known beneficial neuroprotective effects, and previously, some studies suggested that vitamin E is associated with a reduced risk of AD due to its antioxidative properties. However, epidemiological studies and nutritional approaches of vitamin E treatment are controversial.

View Article and Find Full Text PDF

One of the main characteristics of Alzheimer's disease (AD) is the β-amyloid peptide (Aβ) generated by β- and γ-secretase processing of the amyloid precursor protein (APP). Previously it has been demonstrated that polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA), are associated with a reduced risk of AD caused by decreased Aβ production. However, in epidemiological studies and nutritional approaches, the outcomes of DHA-dependent treatment were partially controversial.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by an accumulation of Amyloid-β (Aβ), released by sequential proteolytic processing of the amyloid precursor protein (APP) by β - and γ-secretase. Aβ peptides can aggregate, leading to toxic Aβ oligomers and amyloid plaque formation. Aβ accumulation is not only dependent on de novo synthesis but also on Aβ degradation.

View Article and Find Full Text PDF

Background: Gangliosides were found to be associated with Alzheimer's disease (AD). Here we addressed a potential function of γ-secretase (presenilin) dependent cleavage of the amyloid-precursor-protein (APP) in the regulation of ganglioside de novo synthesis.

Methods: To identify a potential role of γ-secretase and APP in ganglioside de novo synthesis we used presenilin (PS) deficient and APP deficient cells and mouse brains, mutated PS as well as transgenic mice and AD post mortem brains.

View Article and Find Full Text PDF

One of the characteristic hallmarks of Alzheimer's disease (AD) is an accumulation of amyloid β (Aβ) leading to plaque formation and toxic oligomeric Aβ complexes. Besides the de novo synthesis of Aβ caused by amyloidogenic processing of the amyloid precursor protein (APP), Aβ levels are also highly dependent on Aβ degradation. Several enzymes are described to cleave Aβ.

View Article and Find Full Text PDF

Cleavage of amyloid precursor protein (APP) by β- and γ-secretase generates amyloid-β (Aβ) and APP intracellular domain (AICD) peptides. Presenilin (PS) 1 or 2 is the catalytic component of the γ-secretase complex. Mitochondrial dysfunction is an established phenomenon in Alzheimer's disease (AD), but the causes and role of PS1, APP, and APP's cleavage products in this process are largely unknown.

View Article and Find Full Text PDF

Ninety percent of the elderly population has a vitamin D hypovitaminosis, and several lines of evidence suggest that there might be a potential causal link between Alzheimer's disease (AD) and a non-sufficient supply with vitamin D. However, the mechanisms linking AD to vitamin D have not been completely understood. The aim of our study is to elucidate the impact of 25(OH) vitamin D3 on amyloid precursor protein processing in mice and N2A cells utilizing very moderate and physiological vitamin D hypovitaminosis in the range of 20-30% compared to wild-type mice.

View Article and Find Full Text PDF