Publications by authors named "Christoph Niederberger"

The FeCrNi alloy, whose composition is close to that of stainless steel 304, was prepared by electrodeposition and characterized. Nanocrystalline FeCrNi (nc-FeCrNi) was obtained by employing a double-compartment cell where the anode is separated from the cathode compartment, while amorphous FeCrNi (a-FeCrNi) was deposited in a conventional single electrochemical cell. The carbon content of nc-FeCrNi was found to be significantly lower than that of a-FeCrNi, suggesting that carbon inclusion is responsible for the change in the microstructure.

View Article and Find Full Text PDF

Background: Current cardiopulmonary resuscitation (CPR) guidelines recommend airway management and ventilation whilst minimising interruptions to chest compressions. We have assessed i-gel™ use during CPR.

Methods: In an observational study of i-gel™ use during CPR we assessed the ease of i-gel™ insertion, adequacy of ventilation, the presence of a leak during ventilation, and whether ventilation was possible without interrupting chest compressions.

View Article and Find Full Text PDF

A new experimental approach for the characterization of the diametrical elastic modulus of individual nanowires is proposed by implementing a micro/nanoscale diametrical compression test geometry, using a flat punch indenter. A 250 nm diameter single crystal silicon nanowire is compressed inside of a scanning electron microscope. Since silicon is highly anisotropic, the wire crystal orientation in the compression axis is determined by electron backscatter diffraction.

View Article and Find Full Text PDF

We present a novel minimally invasive postprocessing method for catalyst templating based on focused charged particle beam structuring, which enables a localized vapor-liquid-solid (VLS) growth of individual nanowires on prefabricated three-dimensional micro- and nanostructures. Gas-assisted focused electron beam induced deposition (FEBID) was used to deposit a SiO(x) surface layer of about 10 × 10 μm(2) on top of a silicon atomic force microscopy cantilever. Gallium focused ion beam (FIB) milling was used to make a hole through the SiO(x) layer into the underlying silicon.

View Article and Find Full Text PDF