Publications by authors named "Christoph Kilian"

Single-cell-based methods such as flow cytometry or single-cell mRNA sequencing (scRNA-seq) allow deep molecular and cellular profiling of immunological processes. Despite their high throughput, however, these measurements represent only a snapshot in time. Here, we explore how longitudinal single-cell-based datasets can be used for deterministic ordinary differential equation (ODE)-based modelling to mechanistically describe immune dynamics.

View Article and Find Full Text PDF

Pro-inflammatory CD4 T cells are major drivers of autoimmune diseases, yet therapies modulating T cell phenotypes to promote an anti-inflammatory state are lacking. Here, we identify T helper 17 (T17) cell plasticity in the kidneys of patients with antineutrophil cytoplasmic antibody-associated glomerulonephritis on the basis of single-cell (sc) T cell receptor analysis and scRNA velocity. To uncover molecules driving T cell polarization and plasticity, we established an in vivo pooled scCRISPR droplet sequencing (iCROP-seq) screen and applied it to mouse models of glomerulonephritis and colitis.

View Article and Find Full Text PDF

T regulatory type 1 (Tr1) cells, which are defined by their regulatory function, lack of Foxp3, and high expression of IL-10, CD49b, and LAG-3, are known to be able to suppress Th1 and Th17 in the intestine. Th1 and Th17 cells are also the main drivers of crescentic glomerulonephritis (GN), the most severe form of renal autoimmune disease. However, whether Tr1 cells emerge in renal inflammation and, moreover, whether they exhibit regulatory function during GN have not been thoroughly investigated yet.

View Article and Find Full Text PDF

Staphylococcus aureus is frequently detected in patients with sepsis and thus represents a major health burden worldwide. CD4+ T helper cells are involved in the immune response to S. aureus by supporting antibody production and phagocytosis.

View Article and Find Full Text PDF

Background: IL-17A-producing CD4 T helper (T17) cells play a critical role in autoimmune and chronic inflammatory diseases, such as crescentic GN. The proinflammatory effects of IL-17 are mediated by the activation of the IL-17RA/IL-17RC complex. Although the expression of these receptors on epithelial and endothelial cells is well characterized, the IL-17 receptor expression pattern and function on hematopoietic cells, , CD4 T cell subsets, remains to be elucidated.

View Article and Find Full Text PDF
Article Synopsis
  • Hyperinflammation is a key factor in lung injury and high mortality rates in severe COVID-19 cases, leading to acute respiratory distress syndrome (ARDS).
  • Researchers studied immune cells from the lungs and blood of severe COVID-19 patients and found a specific type of T cell, called Trm17 cells, that persists even after the virus is cleared.
  • These Trm17 cells produce cytokines associated with inflammation and may interact with other immune cells, contributing to the severe symptoms and lung damage seen in COVID-19 patients.
View Article and Find Full Text PDF

Although it is well established that microbial infections predispose to autoimmune diseases, the underlying mechanisms remain poorly understood. After infection, tissue-resident memory T (T) cells persist in peripheral organs and provide immune protection against reinfection. However, whether T cells participate in responses unrelated to the primary infection, such as autoimmune inflammation, is unknown.

View Article and Find Full Text PDF

A fundamental problem in biomedical research is the low number of observations available, mostly due to a lack of available biosamples, prohibitive costs, or ethical reasons. Augmenting few real observations with generated in silico samples could lead to more robust analysis results and a higher reproducibility rate. Here, we propose the use of conditional single-cell generative adversarial neural networks (cscGAN) for the realistic generation of single-cell RNA-seq data.

View Article and Find Full Text PDF