Bacteria in nature often thrive in fragmented environments, like soil pores, plant roots or plant leaves, leading to smaller isolated habitats, shared with fewer species. This spatial fragmentation can significantly influence bacterial interactions, affecting overall community diversity. To investigate this, we contrast paired bacterial growth in tiny picoliter droplets (1-3 cells per 35 pL up to 3-8 cells per species in 268 pL) with larger, uniform liquid cultures (about 2 million cells per 140 µl).
View Article and Find Full Text PDFPlant-beneficial bacteria hold the potential to be used as inoculants in agriculture to promote plant growth and health through various mechanisms. The discovery of new strains tailored to specific agricultural needs remains an open area of research. In this study, we report the isolation and characterization of four novel species associated with the wheat rhizosphere.
View Article and Find Full Text PDFBackground: Since the 1980s, soils in a 22-km area near Lake Neuchâtel in Switzerland have been recognized for their innate ability to suppress the black root rot plant disease caused by the fungal pathogen Thielaviopsis basicola. However, the efficacy of natural disease suppressive soils against insect pests has not been studied.
Results: We demonstrate that natural soil suppressiveness also protects plants from the leaf-feeding pest insect Oulema melanopus.
A promising strategy to overcome limitations in biological control of insect pests is the combined application of entomopathogenic pseudomonads (EPPs) and nematodes (EPNs) associated with mutualistic bacteria (NABs). Yet, little is known about interspecies interactions such as competition, coexistence, or even cooperation between these entomopathogens when they infect the same insect host. We investigated the dynamics of bacteria-bacteria interactions between the EPP Pseudomonas protegens CHA0 and the NAB Xenorhabdus bovienii SM5 isolated from the EPN Steinernema feltiae RS5.
View Article and Find Full Text PDFMicrobiol Mol Biol Rev
December 2023
SUMMARYCommunities of microorganisms (microbiota) are present in all habitats on Earth and are relevant for agriculture, health, and climate. Deciphering the mechanisms that determine microbiota dynamics and functioning within the context of their respective environments or hosts (the microbiomes) is crucially important. However, the sheer taxonomic, metabolic, functional, and spatial complexity of most microbiomes poses substantial challenges to advancing our knowledge of these mechanisms.
View Article and Find Full Text PDFContractile injection systems (CISs) are phage tail-related structures that are encoded in many bacterial genomes. These devices encompass the cell-based type VI secretion systems (T6SSs) as well as extracellular CISs (eCISs). The eCISs comprise the R-tailocins produced by various bacterial species as well as related phage tail-like structures such as the antifeeding prophages (Afps) of , the virulence cassettes (PVCs), and the metamorphosis-associated contractile structures (MACs) of .
View Article and Find Full Text PDFThe application of plant-beneficial microorganisms to protect crop plants is a promising alternative to the usage of chemicals. However, biocontrol research often faces difficulties in implementing this approach due to the inconsistency of the bacterial inoculant to establish itself within the root microbiome. Beneficial bacterial inoculants can be decimated by the presence of their natural predators, notably bacteriophages (also called phages).
View Article and Find Full Text PDFBacteria communicate by exchanging chemical signals, some of which are volatile and can remotely reach other organisms. HCN was one of the first volatiles discovered to severely impact exposed organisms by inhibiting their respiration. Using HCN-deficient mutants in two strains, we demonstrate that HCN's impact goes beyond the sole inhibition of respiration and affects both emitting and receiving bacteria in a global way, modulating their motility, biofilm formation, and production of antimicrobial compounds.
View Article and Find Full Text PDFThe Pseudomonas genus has shown great potential as a sustainable solution to support agriculture through its plant-growth-promoting and biocontrol activities. However, their efficacy as bioinoculants is limited by unpredictable colonization in natural conditions. Our study identifies the iol locus, a gene cluster in Pseudomonas involved in inositol catabolism, as a feature enriched among superior root colonizers in natural soil.
View Article and Find Full Text PDFStrains belonging to the Pseudomonas protegens phylogenomic subgroup have long been known for their beneficial association with plant roots, notably antagonising soilborne phytopathogens. Interestingly, they can also infect and kill pest insects, emphasising their interest as biocontrol agents. In the present study, we used all available Pseudomonas genomes to reassess the phylogeny of this subgroup.
View Article and Find Full Text PDFRoot-colonizing bacteria have been intensively investigated for their intimate relationship with plants and their manifold plant-beneficial activities. They can inhibit growth and activity of pathogens or induce defence responses. In recent years, evidence has emerged that several plant-beneficial rhizosphere bacteria do not only associate with plants but also with insects.
View Article and Find Full Text PDFEnvironmental pseudomonads colonize various niches including insect and plant environments. When invading these environments, bacteria are confronted with the resident microbiota. To oppose with closely related strains, they rely on narrow-spectrum weaponry such as tailocins, i.
View Article and Find Full Text PDFBackground: blotch (STB) caused by fungus , is one of the important wheat ( L.) diseases difficult to control because of the lack of wheat resistant cultivars. The use of biological control agents is one possible way for triggering host plant resistance to biotic and abiotic stresses.
View Article and Find Full Text PDFStrains belonging to the Pseudomonas protegens and Pseudomonas chlororaphis species are able to control soilborne plant pathogens and to kill pest insects by producing virulence factors such as toxins, chitinases, antimicrobials or two-partner secretion systems. Most insecticidal Pseudomonas described so far were isolated from roots or soil. It is unknown whether these bacteria naturally occur in arthropods and how they interact with them.
View Article and Find Full Text PDFPlants restrict immune responses to vulnerable root parts. Spatially restricted responses are thought to be necessary to avoid constitutive responses to rhizosphere microbiota. To directly demonstrate the importance of spatially restricted responses, we expressed the plant flagellin receptor (FLS2) in different tissues, combined with fluorescent defense markers for immune readouts at cellular resolution.
View Article and Find Full Text PDFInterference competition among bacteria requires a highly specialized, narrow-spectrum weaponry when targeting closely-related competitors while sparing individuals from the same clonal population. Here we investigated mechanisms by which environmentally important Pseudomonas bacteria with plant-beneficial activity perform kin interference competition. We show that killing between phylogenetically closely-related strains involves contractile phage tail-like devices called R-tailocins that puncture target cell membranes.
View Article and Find Full Text PDFPseudomonas protegens shows a high degree of lifestyle plasticity since it can establish both plant-beneficial and insect-pathogenic interactions. While P. protegens protects plants against soilborne pathogens, it can also invade insects when orally ingested leading to the death of susceptible pest insects.
View Article and Find Full Text PDFMicrobiol Resour Announc
February 2020
We report the draft genome sequence of sp. strain LD120, which was isolated from a brown macroalga in the Baltic Sea. The genome of this marine subgroup bacterium harbors biosynthetic gene clusters for toxic metabolites typically produced by members of this subgroup, including 2,4-diacetylphloroglucinol, pyoluteorin, and rhizoxin analogs.
View Article and Find Full Text PDFMicrobiol Resour Announc
September 2019
Minor differences in the previously obtained genome of CHA0 were detected after resequencing the strain. Based on this, the genome size slightly increased. Additionally, we performed a manual annotation of genes involved in biocontrol and insect pathogenicity.
View Article and Find Full Text PDFPseudomonas protegens are multi-talented plant-colonizing bacteria that suppress plant pathogens and stimulate plant defenses. In addition, they are capable of invading and killing agriculturally important plant pest insects that makes them promising candidates for biocontrol applications. Here we assessed the role of type VI secretion system (T6SS) components of type strain CHA0 during interaction with larvae of the cabbage pest Pieris brassicae.
View Article and Find Full Text PDFThe discovery of insecticidal activity in root-colonizing pseudomonads, best-known for their plant-beneficial effects, raised fundamental questions about the ecological relevance of insects as alternative hosts for these bacteria. Since soil bacteria are limited in their inherent abilities of dispersal, insects as vectors might be welcome vehicles to overcome large distances. Here, we report on the transmission of the root-colonizing, plant-beneficial and insecticidal bacterium Pseudomonas protegens CHA0 from root to root by the cabbage root fly, Delia radicum.
View Article and Find Full Text PDFWe report here the complete annotated genome sequence of ΦGP100, a lytic bacteriophage of the family. ΦGP100 was isolated from rhizosphere soil in Switzerland and infects specifically strains of that are known for their plant-beneficial activities. Phage ΦGP100 has a 50,547-bp genome with 76 predicted open reading frames.
View Article and Find Full Text PDFConservation tillage and organic farming are strategies used worldwide to preserve the stability and fertility of soils. While positive effects on soil structure have been extensively reported, the effects on specific root- and soil-associated microorganisms are less known. The aim of this study was to investigate how conservation tillage and organic farming influence the frequency and activity of plant-beneficial pseudomonads.
View Article and Find Full Text PDF