The conditions that led to the formation of the first organisms and the ways that life originates from a lifeless chemical soup are poorly understood. The recent hypothesis of "RNA-peptide coevolution" suggests that the current close relationship between amino acids and nucleobases may well have extended to the origin of life. We now show how the interplay between these compound classes can give rise to new self-replicating molecules using a dynamic combinatorial approach.
View Article and Find Full Text PDFThe transfer of stereoinformation is at the heart of asymmetric reactions. By incorporating the natural monoterpene l-menthone into the backbone of a diarylethene, we achieved efficient chirality transfer upon photocyclization, resulting in the preferred formation of one major closed isomer in a diastereomeric ratio (d.r.
View Article and Find Full Text PDFBond formation between two molecular entities in a closed system strictly obeys the principle of microscopic reversibility and occurs in favour of the thermodynamically more stable product. Here, we demonstrate how light can bypass this fundamental limitation by driving and controlling the reversible bimolecular reaction between an N-nucleophile and a photoswitchable carbonyl electrophile. Light-driven tautomerization cycles reverse the reactivity of the C=O/C=N-electrophiles ('umpolung') to activate substrates and remove products, respectively, solely depending on the illumination wavelength.
View Article and Find Full Text PDFVarious aldehyde-containing photoswitches have been developed whose reactivity toward amines can be controlled externally. A thermally stable bifunctional diarylethene, which in its ring-closed form exhibits imine formation accelerated by one order of magnitude, was used as a photoswitchable crosslinker and mixed with a commercially available amino-functionalized polysiloxane to yield a rubbery material with viscoelastic and self-healing properties that can be reversibly tuned by irradiation.
View Article and Find Full Text PDF