Thin nanocomposite polymer films embedding various types of nanoparticles have been the target of abundant research to use them as sensors, smart coatings, or artificial skin. Their characterization is challenging and requires novel methods that can provide qualitative as well as quantitative information about their composition and the spatial distribution of nanoparticles. In this work, we show how lock-in thermography (LIT) can be used to quantify the concentration of gold nanoparticles embedded in polyvinyl alcohol (PVA) films.
View Article and Find Full Text PDFCommercial static cell culture substrates can usually not change their physical properties over time, resulting in a limited representation of the variation in biomechanical cues in vivo. To overcome this limitation, approaches incorporating gold nanoparticles to act as transducers to external stimuli have been employed. In this work, gold nanorods were embedded in an elastomeric matrix and used as photothermal transducers to fabricate biocompatible light-responsive substrates.
View Article and Find Full Text PDFUpon dissolution of silver nanoparticles, silver ions are released into the environment, which are known to induce adverse effects. However, since dissolution studies are predominantly performed in water and/or at room temperature, the effects of biological media and physiologically relevant temperature on the dissolution rate are not considered. Here, we investigate silver nanoparticle dissolution trends based on their plasmonic properties under biologically relevant conditions, in biological media at 37 °C over a period of 24 h.
View Article and Find Full Text PDFMagnetic hyperthermia treatments utilize the heat generated by magnetic nanoparticles stimulated by an alternating magnetic field. Therefore, analytical methods are required to precisely characterize the dissipated thermal energy and to evaluate potential amplifying or diminishing factors in order to ensure optimal treatment conditions. Here, we present a lock-in thermal imaging setup specifically designed to thermally measure magnetic nanoparticles and we investigate theoretically how the various experimental parameters may influence the measurement.
View Article and Find Full Text PDFEvaluating nanomaterial uptake and association by cells is relevant for in vitro studies related to safe-by-design approaches, nanomedicine or applications in photothermal therapy. However, standard analytical techniques are time-consuming, involve complex sample preparation or include labelling of the investigated sample system with e.g.
View Article and Find Full Text PDFBackground: There are justifiable health concerns regarding the potential adverse effects associated with human exposure to volcanic ash (VA) particles, especially when considering communities living in urban areas already exposed to heightened air pollution. The aim of this study was, therefore, to gain an imperative, first understanding of the biological impacts of respirable VA when exposed concomitantly with diesel particles.
Methods: A sophisticated in vitro 3D triple cell co-culture model of the human alveolar epithelial tissue barrier was exposed to either a single or repeated dose of dry respirable VA (deposited dose of 0.
Size polydispersity is a common phenomenon that strongly influences the physicochemical properties of nanoparticles (NPs). We present an analytical approach that is universally applicable to characterizing optically anisotropic round NPs and determines directly the number-averaged size distribution and polydispersity via depolarized dynamic light scattering (DDLS). To demonstrate, we use aqueous suspensions of Au NPs of different sizes and surface functionalization.
View Article and Find Full Text PDFStandard transmission electron microscopy nanoparticle sample preparation generally requires the complete removal of the suspending liquid. Drying often introduces artifacts, which can obscure the state of the dispersion prior to drying and preclude automated image analysis typically used to obtain number-weighted particle size distribution. Here we present a straightforward protocol for prevention of the onset of drying artifacts, thereby allowing the preservation of in-situ colloidal features of nanoparticles during TEM sample preparation.
View Article and Find Full Text PDF