Publications by authors named "Christoph Gaul"

This article summarizes the evolution of the screening deck at the Novartis Institutes for BioMedical Research (NIBR). Historically, the screening deck was an assembly of all available compounds. In 2015, we designed a first deck to facilitate access to diverse subsets with optimized properties.

View Article and Find Full Text PDF

The histone 3 lysine 79 (H3K79) methyltransferase (HMT) DOT1L is known to play a critical role for growth and survival of -rearranged leukemia. Serendipitous observations during high-throughput drug screens indicated that the use of DOT1L inhibitors might be expandable to multiple myeloma (MM). Through pharmacologic and genetic experiments, we could validate that DOT1L is essential for growth and viability of a subset of MM cell lines, in line with a recent report from another team.

View Article and Find Full Text PDF

In MLL-rearranged cancer cells, disruptor of telomeric silencing 1-like protein (DOT1L) is aberrantly recruited to ectopic loci leading to local hypermethylation of H3K79 and consequently misexpression of leukemogenic genes. A structure-guided optimization of a HTS hit led to the discovery of DOT1L inhibitors with subnanomolar potency, allowing testing of the therapeutic principle of DOT1L inhibition in a preclinical mouse tumor xenograft model. Compounds displaying good exposure in mouse and nanomolar inhibition of target gene expression in cells were obtained and tested in vivo.

View Article and Find Full Text PDF

A diverse range of selective FGFR4 inhibitor hit series were identified using unbiased screening approaches and by the modification of known kinase inhibitor scaffolds. In each case the origin of the selectivity was consistent with an interaction with a poorly conserved cysteine residue within the middle-hinge region of the kinase domain of FGFR4, at position 552. Targeting this region identified a non-covalent diaminopyrimidine series differentiating by size, an irreversible-covalent inhibitor in which Cys552 undergoes an SNAr reaction with a 2-chloropyridine, and a reversible-covalent inhibitor series in which Cys552 forms a hemithioacetal adduct with a 2-formyl naphthalene.

View Article and Find Full Text PDF

Misdirected catalytic activity of histone methyltransferase Dot1L is believed to be causative for a subset of highly aggressive acute leukemias. Targeting the catalytic domain of Dot1L represents a potential therapeutic approach for these leukemias. In the context of a comprehensive Dot1L hit finding strategy, a knowledge-based virtual screen of the Dot1L SAM binding pocket led to the discovery of , a non-nucleoside fragment mimicking key interactions of SAM bound to Dot1L.

View Article and Find Full Text PDF

Oncogenic MLL fusion proteins aberrantly recruit Dot1L, a histone methyltransferase, to ectopic loci, leading to local hypermethylation of H3K79 and misexpression of HoxA genes driving MLL-rearranged leukemias. Inhibition of the methyltransferase activity of Dot1L in this setting is predicted to reverse aberrant H3K79 methylation, leading to repression of leukemogenic genes and tumor growth inhibition. In the context of our Dot1L drug discovery program, high-throughput screening led to the identification of 2, a weak Dot1L inhibitor with an unprecedented, induced pocket binding mode.

View Article and Find Full Text PDF

Mixed lineage leukemia (MLL) gene rearrangement induces leukemic transformation by ectopic recruitment of disruptor of telomeric silencing 1-like protein (DOT1L), a lysine histone methyltransferase, leading to local hypermethylation of H3K79 and misexpression of genes (including HoxA), which drive the leukemic phenotype. A weak fragment-based screening hit identified by SPR was cocrystallized with DOT1L and optimized using structure-based ligand optimization to yield compound 8 (IC50 = 14 nM). This series of inhibitors is structurally not related to cofactor SAM and is not interacting within the SAM binding pocket but induces a pocket adjacent to the SAM binding site.

View Article and Find Full Text PDF

A variety of cancers depend on JAK2 signaling, including the high-risk subset of B cell acute lymphoblastic leukemias (B-ALLs) with CRLF2 rearrangements. Type I JAK2 inhibitors induce paradoxical JAK2 hyperphosphorylation in these leukemias and have limited activity. To improve the efficacy of JAK2 inhibition in B-ALL, we developed the type II inhibitor CHZ868, which stabilizes JAK2 in an inactive conformation.

View Article and Find Full Text PDF
Article Synopsis
  • JAK inhibitors are effective in reducing symptoms for MPN patients, but many don't show molecular responses to them.
  • A new study tested CHZ868, a type II JAK inhibitor, on JAK inhibitor-resistant MPN cells and found it to be effective in both cell lines and murine models.
  • CHZ868 not only works in resistant cases but also significantly lowers mutant allele burdens, suggesting it could be a promising treatment for MPN patients.
View Article and Find Full Text PDF

Janus kinase (JAK) inhibitors are being developed for the treatment of rheumatoid arthritis, psoriasis, myeloproliferative neoplasms, and leukemias. Most of these drugs target the ATP-binding pocket and stabilize the active conformation of the JAK kinases. This type I binding mode can lead to an increase in JAK activation loop phosphorylation, despite blockade of kinase function.

View Article and Find Full Text PDF

Enzymatic inhibitors of Janus kinase 2 (JAK2) are in clinical development for the treatment of myeloproliferative neoplasms (MPNs), B cell acute lymphoblastic leukemia (B-ALL) with rearrangements of the cytokine receptor subunit cytokine receptor-like factor 2 (CRLF2), and other tumors with constitutive JAK2 signaling. In this study, we identify G935R, Y931C, and E864K mutations within the JAK2 kinase domain that confer resistance across a panel of JAK inhibitors, whether present in cis with JAK2 V617F (observed in MPNs) or JAK2 R683G (observed in B-ALL). G935R, Y931C, and E864K do not reduce the sensitivity of JAK2-dependent cells to inhibitors of heat shock protein 90 (HSP90), which promote the degradation of both wild-type and mutant JAK2.

View Article and Find Full Text PDF

The present study describes a novel series of ATP-competitive PKC inhibitors based on the 2,6-naphthyridine template. Example compounds potently inhibit the novel Protein Kinase C (PKC) isotypes δ, ε, η, θ (in particular PKCε/η, and display a 10-100-fold selectivity over the classical PKC isotypes. The prototype compound 11 was found to inhibit PKCθ-dependent pathways in vitro and in vivo.

View Article and Find Full Text PDF

A novel 2,6-naphthyridine was identified by high throughput screen (HTS) as a dual protein kinase C/D (PKC/PKD) inhibitor. PKD inhibition in the heart was proposed as a potential antihypertrophic mechanism with application as a heart failure therapy. As PKC was previously identified as the immediate upstream activator of PKD, PKD vs PKC selectivity was essential to understand the effect of PKD inhibition in models of cardiac hypertrophy and heart failure.

View Article and Find Full Text PDF

In the light of recently disclosed crystallographic studies on migrastatin ketone 2 complex with fascin, the structures of migrastatin ketone 2 and migrastatin ether 4 have been re-evaluated by NMR and X-Ray crystallographic techniques. The results of these studies established the correctness of the previously reported structural assignment and confirm that the "small molecule" co-crystallized in complex with fascin is not the migrastatin ketone, which was provided for the infusion experiment, but rather its stereoisomer.

View Article and Find Full Text PDF

We have designed and synthesized a novel series of 2,8-diaryl-quinoxalines as Janus kinase 2 inhibitors. Many of the inhibitors show low nanomolar activity against JAK2 and potently suppress proliferation of SET-2 cells in vitro. In addition, compounds from this series have favorable rat pharmacokinetic properties suitable for in vivo efficacy evaluation.

View Article and Find Full Text PDF

A series of novel benzoxazole derivatives has been designed and shown to exhibit attractive JAK2 inhibitory profiles in biochemical and cellular assays, capable of delivering compounds with favorable PK properties in rats. Synthesis and structure-activity relationship data are also provided.

View Article and Find Full Text PDF

Tumor metastasis is the most common cause of death in cancer patients. Here, we show that two, fully synthetic migrastatin analogues, core macroketone and core macrolactam, are potent inhibitors of metastasis in a murine breast tumor model. Administration of these readily accessible compounds nearly completely inhibits lung metastasis of highly metastatic mammary carcinoma cells.

View Article and Find Full Text PDF

The first asymmetric total synthesis of (+)-migrastatin (1), a macrolide natural product with anti-metastatic properties, has been accomplished. Our concise and flexible approach utilized a Lewis acid-catalyzed diene aldehyde condensation (LACDAC) to install the three contiguous stereocenters and the trisubstituted (Z)-alkene of migrastatin (2 + 3 --> 21). Construction of the two remaining stereocenters and incorporation of the glutarimide-containing side chain was achieved by an anti-selective aldol addition of propionyl oxazolidinone 28 to angelic aldehyde 27, followed by a Horner-Wadsworth-Emmons (HWE) coupling of 32 with glutarimide aldehyde 5.

View Article and Find Full Text PDF

Synthesis of highly active migrastatin-based tumor migration cell inhibitors has been accomplished. Our flexible and concise total synthesis of migrastatin has allowed us to explore otherwise inaccessible migrastatin-derived structural motifs. This effort has resulted in the discovery of analogues with tumor cell migration inhibitory activity 3 orders of magnitude higher than that of the natural product.

View Article and Find Full Text PDF

The first total synthesis of (+)-migrastatin, a macrolide natural product with interesting antimetastatic properties, has been accomplished. Our concise and flexible approach utilizes a Lewis acid-catalyzed diene aldehyde condensation to install the three contiguous stereocenters and the trisubstituted (Z)-alkene of migrastatin. Construction of the two remaining stereocenters and incorporation of the glutarimide-containing side chain have been achieved via an anti-selective aldol reaction, followed by a Horner-Wadsworth-Emmons olefination.

View Article and Find Full Text PDF

We have previously used trisubstituted cyclopropanes as peptide replacements to induce conformational constraints in known pseudopeptide inhibitors of a number of important enzymes. Cyclopropane-derived peptide mimics are novel in that they are among the few replacements that locally orient the peptide backbone and the amino acid side chain in a predefined manner. Although these dipeptide isosteres have been employed to orient amino acid side chains mimicking the gauche(-) conformation of chi(1)-space, their ability to project the side chains into an anti orientation has not been evaluated.

View Article and Find Full Text PDF