Publications by authors named "Christoph Fiedler"

Purpose: We investigate the dependence of the kinematics of the human knee on its anatomy. The idea of describing the kinematics of the knee in the sagittal plane using four-bar linkage is almost as old as kinematics as an independent discipline. We start with a comparison of known four-bar linkage constructions.

View Article and Find Full Text PDF

Purpose: In comparative examinations of kinematics of the knees of humans and pigs in flexional/extensional motion under compressive loads, the significant differential geometric essentials of articular guidance are elaborated to criticise the shaping of the articular surfaces of conventional knee-endoprostheses and to suggest constructional outlines that allow the endoprosthesis to adopt natural knee kinematics. Implantation is discussed with regard to the remaining ligamentous apparatus.

Methods: Twelve fresh pig knee joints and 19 preserved human knee joints were moved into several flexional/extensional positions.

View Article and Find Full Text PDF

The mathematical approach presented allows main features of kinematics and force transfer in the loaded natural tibiofemoral joint (TFJ) or in loaded knee endoprostheses with asymmetric condyles to be deduced from the spatial curvature morphology of the articulating surfaces. The mathematical considerations provide the theoretical background for the development of total knee replacements (TKR) which closely reproduce biomechanical features of the natural TFJ. The model demonstrates that in flexion/extension such kinematic features as centrodes or slip ratios can be implemented in distinct curvature designs of the contact trajectories in such a way that they conform to the kinematics of the natural TFJ in close approximation.

View Article and Find Full Text PDF

Firstly, the way of implementing approximatively the initial rollback of the natural tibiofemoral joint (TFJ) in a total knee replacement (AEQUOS G1 TKR) is discussed. By configuration of the curvatures of the medial and lateral articulating surfaces a cam gear mechanism with positive drive can be installed, which works under force closure of the femoral and tibial surfaces. Briefly the geometric design features in flexion/extension are described and construction-conditioned kinematical and functional properties that arise are discussed.

View Article and Find Full Text PDF

A novel class of total knee replacement (AEQUOS G1) is introduced which features a unique design of the articular surfaces. Based on the anatomy of the human knee and differing from all other prostheses, the lateral tibial "plateau" is convexly curved and the lateral femoral condyle is posteriorly shifted in relation to the medial femoral condyle. Under compressive forces the configuration of the articular surfaces of human knees constrains the relative motion of femur and tibia in flexion/extension.

View Article and Find Full Text PDF